Swiss-PdbViewer

A Guide for Users of Macromolecular Models

ane

李伟 范晓娟 葛红云 刘钰莹 孟画诗

- 1.Get Started
- 2.Windows and help
- 3.Manipulating the Model
- 4.Selecting and Displaying
- 5.Color
- 6.Measuring and Labeling

7.Mutating and Changing Side-Chain Conformations

- 8.Ramachandran Plot
- 9.Working with Oligomeric Proteins
- 10. Comparing Proteins: Hemoglobins

1.Get Started

- 首先下载并安装SPDB-Viewer软件.
- 进入PDB主页 http://www.rcsb.org/pdb/cgi/explore.cgi?, 以斑头雁血红蛋白1A4F的3D结构为例,输入 1A4F,点击site search,就会出现以下界面。
- 点击download图标,下载1a4f.pdb文件到电脑上。

CRCSB PDB : Structure Explor	er - Microsoft Inte	rnet Explorer				
🚱 🕤 🔻 🕬 http://www.rcsb.org/pd	b/explore/explore.do?struc	tureId=1A4F			v	
🚖 🚓 🔡 🔹 🔚 Deep View (Swiss-Pd	bVi res RCSB PDB : Str	ictur X			l.	🕯 • 🔊 • 🖶 • 📴 页面 🕑 • 🎯 工具 (0)
CONTACT US HELP PRINT PAGE	● PDB ID or keyword ○	Author		Ai As of Site Search	n Information Portal to Biol Tuesday Jan 08, 2008 🔊 there are 4 vanced Search	A MEMBER OF THE PDB ogical Macromolecular Structures 8235 Structures (2) PDB Statistics (2)
Home Search Structure Queries	Are you missing dat For more informatio	a updates? The P n click <mark>here</mark> .	DB archive has m	oved to ftp://ftp	.wwpdb.org.	
- 1 A4F	Help Structure Summar	y Biology & Chemist	ry Materials & Method	ls Sequence Details	Geometry	
 Download Files FASTA Sequence Download Original Files 	1a4f 💽 🖹 🖉	61.			DOI 10.2210/pdb1a4f/pdb	Images and Visualization
 Display Files Display Molecule 	Red - Derived information	BAR-HEADED GOO	SE HEMOGLOBIN (C	XY FORM)		
 Structural Reports External Links Structure Analysis 	Authors	Zhang, J., Gu,)	ζ.			
Help	Primary Citation	Zhang, J., Hua, Z., oxygen affinity specie 484-493	, Tame, J.R. , Lu, G. , s of haemoglobin (bar-h	Zhang, R., Gu, X. (neaded goose haemou	(1996) The crystal structure of a high globin in the oxy form). <i>J.Mol.Biol.</i> 255:	
When exploring a	History	[Abstract] (Deposition 1998-0	1-29 Release 1998-	-04-29		
structure, select Structure Analysis and then Geometry from the left menu to view a	Experimental Method	Type X-RAY DIFF	RACTION Data N/A			Display Options @ KiNG Jmol
Ramachandran Plot.	Parameters	Resolution[Å] 📰 2.00	R-Value 0.198 (work)	R-Free n/a	Space Group P 4 ₂ 2 ₁ 2	WebMol MBT SimpleViewer* MBT Protein Workshop

打开PDB-Viewer软件, 点击file→open PDB file

🔆 DeepView / Swiss-PdbViewer 3.7 (SP5)		1
<u>F</u> ile <u>E</u> dit <u>S</u> elect <u>B</u> uild <u>T</u> ools <u>F</u> it <u>D</u> isplay <u>C</u> ol	lor <u>P</u> references S <u>w</u> issModel <u>W</u> indow <u>H</u> elp	
Open PDB File Ctrl+O		
Open mmcif File Shift+Ctrl+O		
Open MOL File		
2 Open <u>T</u> ext File		
F Run Script		
, Import		
Open Surface 🕨		
Open Electrostatic Potential 🕨 🕨		
Open Electron Density Map 🕨 🕨		
01		

2. Windows and help

• 注意对话框上面的文字工具栏,其中 windows选项卡下面有如下内容

S <u>w</u> ıssModel	<u>W</u> indow <u>H</u> elp	
ORSION ?	<u>T</u> oolbar	Alt+-
°℃¶.	<u>C</u> ontrol Panel	Alt+,
	<u>A</u> lignment	Ctrl+L
	Layers Infos	Ctrl+I
	<u>R</u> amachandran Plot	Ctrl+R
	Electron Density Map	Shift+Ctrl+I
	Cavities	Shift+Ctrl+T
	✓ Link Toolbar and Graphic \	Wind
	Te <u>x</u> t	Alt+\$

- Control panel 显示3D结构的氨基酸残基和PDB文件的内容。我们可以利用它来选择残基、标记残基、确定展示的内容和对残基进行染色。
- Tool bar 位于图形窗口上面,我们可以 利用tool bar来观看、操纵和测量模型。

 Window → Alignment 可以提供序列比对 能,当点击时会在图形对话框下面出现条状对话框, 里面显示了蛋白序列,如果输入两个序列,点击最左 面的文档样小方框,就会把序列比对的详细信息列出

• Wind: Layer Infos 图层信息窗口,让你能够方便地控制显示和性能的多层。如下图所示

Layers	Infos	3						X
? Layer	vis	mov	axisCA	0	H	Hbnd Hdst side	НОН сус	Sel
1A4F	V	v	v	v	v	v	v v	78

其中mov控制图形的运动, axis表示坐标轴, CA 控制是否只显示主链C原子, O和H控制是否显示这两种原子, Hbnd 控制是否显示H-键, HOH表示水分子或者是溶剂, sel表示选择的残基数。

3. Manipulating the Model

- 😼 可以显示模型的一般页面
- 🔄 可以平移模型
- 🔜 放大缩小所选模型
- 🖳 可以使模型进行旋转

- 🗾 测量两个原子之间的距离
- 💟 测量测量三个点之间的角度
- 👿 测量两个残基之间的二面角
- 🗊 点击可以知道该残基的一般信息
- ⑧得到距离中心原子几埃之类的其他残 基或原子
- 🗊 将所选原子处于窗口的中心位置

isplay <u>C</u> olor <u>P</u> references S <u>w</u> issModel <u>W</u> in	ndow <u>H</u> elp
Views	•
View <u>F</u> rom	•
Label <u>K</u> ind	•
S <u>1</u> ab	Alt+/
<u>S</u> tereo View	Ctrl+T
Show Axis	
Show CA <u>T</u> race Only	
Show Backbone Oxygens	
Show Backbone Oxygens Show Sidechains even when Backbone is Hid	den
 Show Backbone <u>O</u>xygens Show S<u>i</u>dechains even when Backbone is Hid Show Dots Surface 	den
 Show Backbone <u>O</u>xygens Show S<u>i</u>dechains even when Backbone is Hid Show Dots Surface Show Forces 	den
 Show Backbone <u>O</u>xygens Show S<u>i</u>dechains even when Backbone is Hid Show Dots Surface Show Forces Show <u>H</u>ydrogens 	.den Ctrl+H
 Show Backbone Oxygens Show Sidechains even when Backbone is Hid Show Dots Surface Show Forces Show Hydrogens Show H-bonds 	den Ctrl+H Ctrl+B
 Show Backbone Oxygens Show Sidechains even when Backbone is Hid Show Dots Surface Show Forces Show Hydrogens Show H-bonds Show H-bonds distances 	den Ctrl+H Ctrl+B
 Show Backbone Oxygens Show Sidechains even when Backbone is Hid Show Dots Surface Show Forces Show Hydrogens Show H-bonds Show H-bonds distances Show Only H-bonds from selection 	den Ctrl+H Ctrl+B
 Show Backbone Oxygens Show Sidechains even when Backbone is Hid Show Dots Surface Show Forces Show Hydrogens Show H-bonds Show H-bonds distances Show Only H-bonds from selection Show Only groups with yisible H-bonds 	den Ctrl+H Ctrl+B
 Show Backbone Oxygens Show Sidechains even when Backbone is Hid Show Dots Surface Show Forces Show Hydrogens Show H-bonds Show H-bonds distances Show Only H-bonds from selection Show Only groups with yisible H-bonds Vse OpenGL Rendering 	den Ctrl+H Ctrl+B Shift+Ctrl+3

是扭曲工具,这个可以旋转侧链原子;首先 单击这个按钮,然后挑选任何你想要修饰的氨基 酸,通过按住从1到5的一个关键点任何侧链键可 以被旋转,这是当你在左右点击和移动鼠标的时候。

4. Selecting and Displaying

- 在control panel中选择一个残基,然后拖动鼠标至要选择的范围松开鼠标,就会发现被选择的部分变成红色,接下来的操作只针对这些残基。Side会显示侧链,label会显示残基名称,surface会以点的形式显示蛋白表面。
- 在tools下拉框中选择Compute H Bonds, H键 会以绿色的形式显示出来。

 Select → Secondary Structure→ Helices,我们将会只看到蛋白的alpha 螺旋区域在control bar中去掉侧链 (side),在layer info中选择CA,确 定看到的只是alpha螺旋。以斑头雁血红 蛋白1A4H为例,所得到的结构如下图所示:

在select — Secondary Structure coils,就会显示无规卷曲,如下图所示是 1A4H里的无规卷曲。

- Display下选择 Show H Bonds 会显示键,再点第二次,H键去除。
- Layer infos窗口包含显示图形的状态信息。最右侧的Sel的数字表示所选的基团数目

Layers 1	Info	3					X
? Layer	vis	mov	axisCA	0	H	HbndHdstsideH0H cyc	Sel
2GTT N pro	v	V	v v	v	v	v v	454

5. Color

Deep View (Swiss-PdbViewer)可以将模型用不同的颜色区来显示,可以生动形象的展示分子的结构、化学、相关的特征。

Color: Secondary Structure

Deep View 可螺旋标记为红色,折叠标记为黄色,其他的二级结构标记为灰色。

在图中,血红蛋白的螺旋用红色显示了,其余的无规则卷曲用灰色表示,同时也在control panel窗口的右侧一列小方格以红色标记构成螺旋的氨基酸残基。

Color: Secondary Structure Succession

Secondary Structure Succession能将整个 序列的每个二级结构用不同的颜色显示出 来,第一个二级结构用紫色,最后一个用 红色,中间的二级结构用在可见光谱 (400nm-700nm)的各种不同的颜色显示 出来。这样可以更清楚的看到二级结构间 的顺序。

Swiss-PdbViewer 3.7 (SP5)	- 🗆 X	Control Panel	—X
Eile Edit Select Build Tools Eit Display Color Preferences SwissModel Window Help		1A4F-a	
		group show side lab	can move 🔽
IA4F-a (725 x 472) IA4F-a (725 x 472) IA4F-a v v v v v IA4F-a v v v v	Sel 1	A h LYS60 v A h VAL62 v A h VAL63 v A h VAL63 v A h ALA64 v A h ALA65 v A h ALA65 v A h LU66 v A h CLU68 v A h CLU68 v A h CLU68 v A h ALA69 v A h CLU68 v A h ALA69 v A h ALA69 v A h ALA67 v A h ALA77 v A HIS72 v A HIS72 v A HIS72 v A HIS72 v A ASP74 v A ASP75 v A ASP75 v A ASP75 v A ALA77 v A ASP75 v A ALA77 v A A ALA77 v A A SP74 v A A SP75 v A A ALA77 v A A ASP75 v A A ASP74 v A A SP75 v A A ASP75 v A A ASP75 v A A ASP74 v A A SP75 v A A ALA77 v A A ASP75 v A A ASP76 v A A ASP76 v A A ASP77 v A A A	

图中,血红蛋白 a 亚基整条多肽链二级结构用不同的颜色显示了: 从氨基端到羧基端的颜色为——蓝色、淡蓝色、蓝绿色、绿色、黄色、 桔黄色、红色。control panel窗口的右侧一列小方格以相同的颜色 标记构成同一个二级结构的氨基酸残基,不相同的颜色标记构成不同 二级结构的氨基酸残基。

Color: Chain

😵 DeepView / Swiss-PdbViewer 3.7 (SPS)	- - X	🔽 visible 💡	can move 🔽
<u>F</u> ile Edit <u>S</u> elect Build Tools Fit Display Color Preferences S <u>w</u> issModel <u>W</u> indow Help		group show side labl	$\odot_{\rm V}$ ribn col $_{\rm B,S}$
		A h LYS127 v A h PHE128 v A h LEU129 v A h CYS130 v	
8 1A4F (705 x 549)	- 22 -	A h ALA131 v	
		A h GLV132 V A h GLV133 V A h THR134 V A h VAL135 V A THR137 V A THR137 V A ALA138 V A THR137 V A ALA138 V A TYR140 V A ARG141 V A OXT141 V B VAL1 V B TRP3 V B TRP3 V B TRP3 V B TRP3 V B ALA5 V B h GLU7 V B h GLU7 V B h GLU7 V B h GLU7 V B h GLV7 V B h GLV7 V B h GLV7 V B h GLV7 V B h LEV13 V B h LEV13 V B h LEV14 V B h GLV14 V B h LEV15 V B h GLV7 V B h GLV18 V B h GLV18 V B h GLV21 V B h GLV2 V	

 这个命令适合的 于含有多条链的 结构模型,不同 的链用不同的颜 色加以区分。

 从图中可以很清 楚的看到,血红 蛋白的α亚基以 黄色显示,β链 以蓝色显示。

Color: Type

 这项命令使得根据氨基酸残基的化学类型 而显示不同的颜色:无极性的氨基酸氨基 以灰色显示,不带电荷的极性氨基酸以黄 色显示,带负电荷的氨基酸残基以红色显 示,带有正电荷的氨基酸残基以蓝色显 示,如下图所示

Move All Move All 1A4F-a (705 x 549)	aroup show side labl : ,, ribn col p ; A h LYS61 v v A h VAL62 v v A h VAL63 v v A h VAL63 v v A h ALA64 v v A h ALA65 v v
№ 1A4F-a (705 x 549)	A h VAL62 v v
	↓ h VAL67 v v □ ↓ h GLU68 v v □
	A h ALA69 v v UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
A A A A	
YX K J	A ASP74 v v ASP75 v v ASP75 v v
Y KA THE KAR	A h ILE76 v v 🔲 A h ALA77 v v 🔤
	A GLY78 V V
KAT A FLAND	A h SER81 v v
	∖hLEU83 v v 🔲 ∖hSER84 v v 🛄
and the territer	A h ASP85 v v
A Start All - The All	A h HIS87 V V A h ALA88 V V
THE FOR MAY	A h LYS90 V V
Y P J THAN	A ARG92 v v V ARG92 v ARG92 v v ARG92 v V ARG92 v V ARG92 v
1 PKK K H K J 1/2	A ASP94 v v A PRO95 v v A PRO95 v V
	A h ASN97 V V
	A h LYS99 V V
	A h LEU101 v v □ A h GLY102 v v □
	∧ h HIS103 v v ↓ ↓ ↓ h CYS104 v v ↓ ↓
	A h PHE105 V V

Color: Accessibility

模型中每个氨基酸残基的颜色是取决于 它与周围溶剂接触的程度。与溶剂接触 最少的(埋藏在分子内的)氨基酸残基 显示蓝色,与溶剂接触最多的(暴露于 分子表面的)氨基酸残基显示红色。因 此,可以通过看氨基酸残基的颜色来判 断其与溶剂的接触程度。

DeepView / Swiss-PdbViewer 3.7 (SP5)	_ 🗆 🗙	Control Panel	
Edit Select Build Tools Fit Display Color Preferences SwissModel Window Help		1A4F-a	
		visible ?	can move 🔽 🛄
		group show side labl	∷ _v ribn col _{B S}
		A VAL1 V	v v 📕 🛛 🚺 🚺
LA4F-a (734 x 480)	<u></u>	A LEUZ V A SER3 V	
		A h ALA4 v	
		A h ASP6 V	
		A h LYS7 V	
		A h ASN9 V	
		A h VAL10 v	
		A h GLY12 V	
		A h VAL13 V	
$\land \land $		A h SER15 V	
		A h LYS16 V	
		A h SER18 V	
		A GLY19 V	
		A ALA21 V	
		A h GLU22 V	
		A h TYR24 v	
		A h GLY25 V	
		A h GLU27 v	
		A h THR28 V	
		A h GLU30 v	
		A h ARG31 V	
		A h PHE33 v	
		A h THR34 V	
		A TYR36 V	
		A PRO37 V	
		A IN OLIVIDE	

图中,将与溶剂接触较多的原子以球形结构显示出来了, 与溶剂接触最多的氨基酸残基显示红色,与溶剂接触 最少的氨基酸残基显示蓝色。

Color: B Factor

- 执行这项命令后,模型中颜色的取决于B因子 (或称之为温度因子)。对于一个的原子来 说,B因子指的是该原子在一般的(平均化了 的)模型的位置与在其他模型的位置间的平均 距离,可反映分子各部分的摇摆性或活动性。
 因此,可以利用B因子来判断其他模型与一般
- 因此,可以利用DG了不到副兵他模型与一般模型的一致性。若在所有测得的模型中该原子的位置变化不大是固定的,则以深蓝色显示;若在所有测得的模型中该原子的位置是不确定

的或者说摇摆性很大,则以红色表示。

不同部位的颜色标记

- 在control panel窗口的col 的旁边有字母BS,当单击 BS下面的黑色三角形时, 会弹出下拉式菜单,如图 所示:
- 一般默认为BS

 (backbone+sidechain)

,及骨架和侧链。选中某 项,颜色就影响某项,如 选**Ribbon**,则影响模型中 色带的颜色。

DeepView / Swiss-PdbViewer 3.7 (SP5)			group :	show side labl :: _W ribn col _R	
Edit Select Build Iools Fit Display	Color Preferences SwissModel Window act on Ribbon ▶ by CPK ▶ by Iype ▶ by RMS ▶ by B-Eactor ▶ by Secondary Structure ▶ by Secondary Structure Succession ▶	Help act on Backbone + Sidechains act on Backbone act on Sidechains act on Ribbon act on Label act on Surface	A h SER84 A h ASP85 A h LEU86 A h HIS87 A h ALA88 A h GLN89 A h LYS90 A LEU91 A ARG92 A VAL93 A ASP94 A PRO95 A h VAL96		
	by Selection by Layer by Chain by Alignment Diversity by Accessibility by Threading Energy by Force Field Energy by Protein Problems		A h ASIN97 A h PHE98 A h LYS99 A h PHE100 A h LEU101 A h GLY102 A h HIS103 A h CYS104 A h PHE105 A h LEU106 A h VAL107 A h VAL108		
	by <u>O</u> ther Color by <u>B</u> ackbone Color by Si <u>d</u> echain Color by <u>Ribbon Color</u> by Surface Color by Label Color		A h VAL109 A h ALA110 A h ILE111 A h HIS112 A HIS113 A PR0114 A SER115 A ALA116 A LEU117 A THR118 A h ALA119 A h GLU120		

Color下拉式菜单的子菜单与control 窗口中的 <u></u>的作用相同

Color: CPK

这项命令可以将所有基团的颜色回复到标准的颜色——C原子以白色显示,O原子以红色表示,N原子以蓝色显示,S原子以黄色表示.

6.Measuring and Labeling

点击距离按钮,再依次点击结构图中的两个 原子就可以得到两个原子之间的距离

6. Measuring and labeling

以斑头雁氧合血红蛋白1A4F为例,可以得到血红素中心铁原子与O₂分子的距离为2.99nm。

6.Measuring and Labeling

角度按钮^[2],首先点击角顶点的原子,然后点击 角两个边的原子,就会显示角的角度。 血红素上的O₂与血红素平面的夹角为94.09°

6. Measuring and Labeling

点击二面角按钮₩,点击任意一个原子将会在图 ● 形框上方显示phi,psi和omega角

•去除标记的方法:

display → label kind
 → clear user labels

7. Mutating and Changing Side-Chain Conformations

突变某一个氨基酸,从而改变蛋白的空间结构,由此可以重新设计蛋白,使之与底物更好地结合。选择显示氧气分子6埃以内的原子:

7. Mutating and Changing Side-Chain Conformations

发现产生空间为阻效应的主要为his,将其突变为小侧 链的氨基酸Ala,点击mutate按钮,再点击his的任何 一个原子,选择下拉框中的Ala,再点一次mutate选 择接受还是放弃突变。

7. Mutating and Changing Side-Chain Conformations

• Torsion可以改变氨基酸侧链的构型: 点击Torsion,再点击所要旋转的氨基酸 的任何一个原子, 鼠标会变成旋转图 标,拖动鼠标的同时按住1,是旋转侧链 的第一个键, 按住2 是旋转第二个键, 按住三是旋转第三个键。点击第二次 Torsion选择接受还是放弃旋转改变。

8.Ramachandran Plot

Ramachandran Plot(α-碳与酰胺平面交角图),通过它我们可以判断一个模型的质量,可以找到一个残基与一个特定平面的构象角,我们也可以改变模型中的构象角。图形中的每一个点都给出了每个残基的phi和psi角

在工具栏WINDOW下选择Ramachandran Plot , 然后 出现下面的图片

- 点击Rama Plot 使它激活,出现上面的那个图片,将最标放在图上的一个点上(不用点击它),残基的名字和零字出现在这个窗口的最上面的左上角,然后移动这个点流。
- 看Ramachandran Plot,并且注意到很小的点出现—仅 仅是呈现被选择的残基,注意一下大量的点都位于图片左 上角的黄色区域,相应的beta构型的角位于在这个区域。
- 当你观察这个模型时点击或是拖拽图上的一个点转动,当你水平的拖拽时,你正改变的是phi角;当你垂直的拖拽时,你正改变的psi角。这允许你在模型的构建中调整骨架构象。这些可以使你更加了解分子的结构及其它的二面角。

9.Working with Oligomeric Proteins

• Color : chain

许多蛋白质是由多个亚基或者蛋白质链组成。**Deepview color**可以显示各亚基不同的颜色。这个命令是一个快速的方法来找出新打开的pdb文件中有多少个蛋白链或者亚基。

• 我们选斑头雁的血红蛋白1A4F为例子. 此结构包括α和β亚基血红蛋白。 你同 能知道,血红蛋白包括四个亚基,两个 α亚基和两个β亚基。一些寡聚蛋白质 的pdb文件只包含独特的亚基,在1A4F 的结构中,就包括其中的一个的α和β。 稍后,你可以建立更多的亚基组成。 但 首先,你要先检查亚基之间接触的表面。

- 点击命令行Windows –Control panel,
 以启动这个选项。字母A在第一栏中,
 可以理解为是第一个亚基。
- 点击链中的栏位选择整个亚基。从开始向下滚动,到A亚基的底部,该蛋白的A链残基被选中,也可以直接单击字母A选中A亚基。按下enter,亚基b或其他亚基消失。

• Select: Groups Close to another Chain...

使用此命令行选择位于一个残基周围5 埃(或其他距离)的其他残基,并单击 确定。这等于挑选残留在5埃的亚基界 面。单击返回,以消除其他残留物。

• 研究亚基之间的相互作用。 选定 sidechains lacking proper H-bonds, 然后计算出的H-键。 放大了仔细研究 前面所讲的亚基的颜色,让你分辨亚基 A和B, 而sidechain颜色显示类型的相 互作用。 红方链(负)近蓝(正面)表 明离子相互作用。 近灰色意味着疏水相 互作用。而绿色虚线显示的是H-键。 如下图所示

绿色虚线表示H-键

当你完成后,重新显示整个模型。重新打开Control Panel中的color选项可以选择显示backbone + sidechain的颜色,也可以选择显示其他的颜色,如 label_surface。可以关掉H-键的显示。

• 改变图形的样子,由线性变成棍型

将线性的结构变成棍型,这样看起来更加清晰。点击Display-use openGL
 Rendering,然后再点击Render in solid
 苏,就会出现如下图所示的棍状模型。

 superimpose (重叠)是右边倒数第三个按 钮,可对应的点击两个模型中的三个原子进 行重叠,选择斑头雁血红蛋白的氧合形式 1A4F和去氧形式1HV4进行重叠,当点击完 三个对应的原子时,两个模型重叠起来。
 Color → by layers

 比较1A4F的A、B亚基,首先选择A、B亚基, save→ from selected residues .fit→ magic fit 主要是通过序列比对发现二者的差别

- Fit Calculate RMS Deviation RMS是A、B链的所有相应的alpha碳原 子的平方根,在图形框上方的红色字体 显示:nb atoms involved: 137, RMS
 - 显示:nb atoms involved : 137,RM 1.34
- Fit: Best Fit (with Struct. Align.) 在magic fit的基础上又加了结构比对。
- Select: Inverse Selection: 可取消 之前所选择的原子或集团

Thank You

