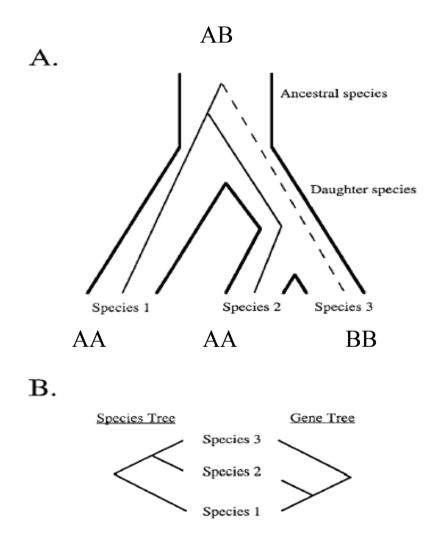
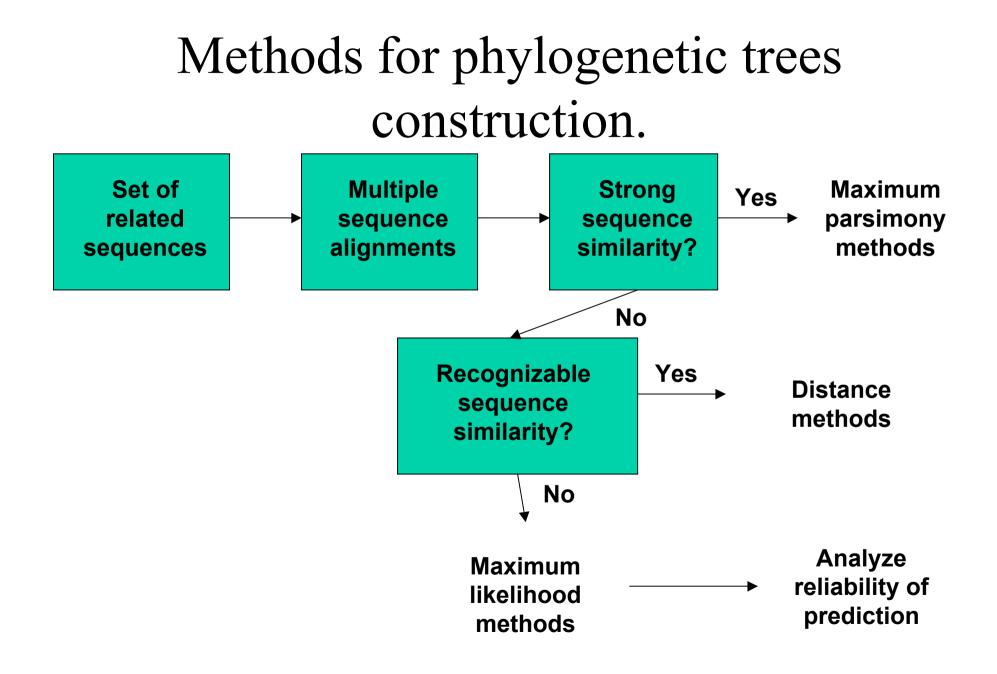

Phylogenetic analysis

Shi Xiaoli Jan. 13, 2007

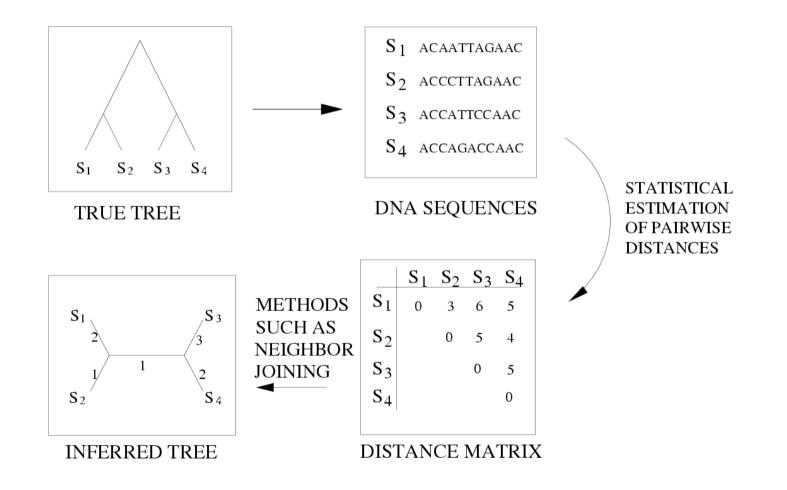
Tree of the life



• From http://tolweb.org/tree/



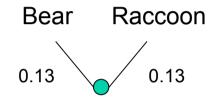
• From Tandy Warnow 2004


Gene Trees and Species Trees

From Doyle and Gaut; Plant Molecular Biology 42:1-23, 2000

Distance Based Methods

•From Tandy Warnow 2004

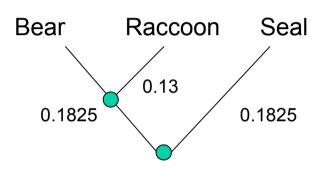

Distance Based Methods

- UPGMA algorithm (Michener & Sokal 1957)
- ME algorithm (Rzhetsky & Nei 1993)
- NJ algorithm (Saitou & Nei 1987)

UPGMA algorithm

- AGGCCATGAATTAAGAATAA 1778
- AGCCCATGGATAAAGAGTAA 2.
- AGGACATGAATTAAGAATAA 3.
- **AAGCCAAGAATTACGAATAA** 4.

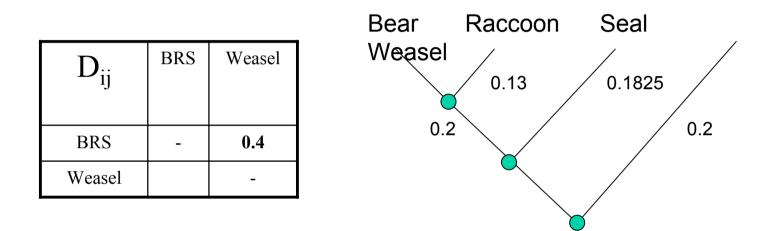
D _{ij}	Bear	Raccoon	Weasel	Seal
Bear	-	0.26	0.34	0.29
Raccoon		-	0.42	0.44
Weasel			-	0.44
Seal				-



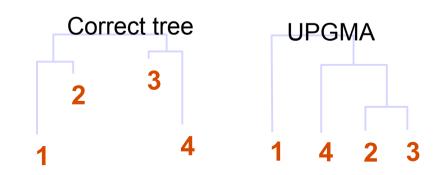
- 1.
- Pick smallest entry D_{ij} Join the two intersecting species and assign branch lengths $D_{ij}/2$ to each 2. of the nodes
- Compute new distances to the other species using arithmetic means 3.

$$D_{W(BR)} = \frac{D_{WB} + D_{WR}}{2} = \frac{0.34 + 0.42}{2} = 0.38$$
$$D_{S(BR)} = \frac{D_{SB} + D_{SR}}{2} = \frac{0.29 + 0.44}{2} = 0.365$$

UPGMA algorithm


D _{ij}	BR	Weasel	Seal
BR	-	0.38	0.365
Weasel		-	0.44
Seal			-

- 1. Pick smallest entry Dij
- 2. Join the two intersecting species and assign branch lengths Dij/2 to each of the nodes
- 3. Compute new distances to the other species using arithmetic means


$$D_{W(BRS)} = \frac{D_{WB} + D_{WR} + D_{WS}}{3} = \frac{0.34 + 0.42 + 0.44}{3} = 0.4$$

UPGMA algorithm

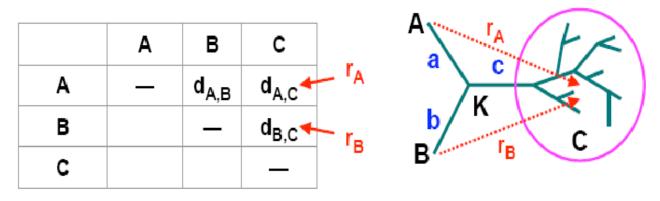
- 1. Pick smallest entry Dij.
- 2. Join the two intersecting species and assign branch lengths Dij/2 to each of the nodes.
- 3. Done!

- Goal
 - Join closest *neighbors* (nodes with same parent) in tree
 - Avoids problem with UPGMA when rates of change differ
 - Closest leaves are not neighbors in correct tree but are joined first by UPGMA
- Assumptions
 - Rate of change can differ
 - Branch lengths for tree are *additive*

• Calculating branch length after join (additive tree)

	Α	в	С	Aa
Α		d _{A,B}	d _{A,C}	
В		_	d _{B,C}	b
С				B

- Simple algebra shows
 - Given
 - d_{A,B} = a + b


We can calculate

•
$$a = \frac{1}{2} (d_{A,B} + d_{A,C} - d_{B,C})$$

•
$$b = \frac{1}{2} (d_{A,B} + d_{B,C} - d_{A,C})$$

•
$$c = \frac{1}{2} (d_{B,C} + d_{A,C} - d_{A,B})$$

- Basic principle for neighbor joining algorithm
 - Simply treat all other nodes as C, and treat distance to C as r.

- Replace distance to C
 - Use normalized divergence r_A , $r_B(\sim avg. distance to nodes)$
 - $a = \frac{1}{2} (d_{A,B} + d_{A,C} d_{B,C}) \rightarrow \frac{1}{2} (d_{A,B} + r_A r_B)$
 - $b = \frac{1}{2} (d_{A,B} + d_{B,C} d_{A,C}) \rightarrow \frac{1}{2} (d_{A,B} + r_B r_A)$
 - $c = \frac{1}{2} (d_{B,C} + d_{A,C} d_{A,B}) \rightarrow \frac{1}{2} (d_{B,C} + d_{A,C} d_{A,B})$

- Approach
 - To find closest pair of neighbors

Reduce branch length for a node by the average distance of the node from all other nodes

Find smallest distance between nodes after reduction.

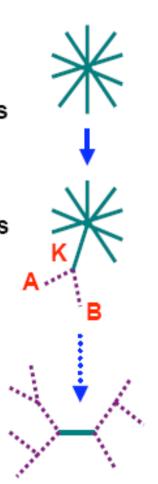
• Definitions

For all pairs of nodes A & B in set of all nodes L, let $d_{A,B} = distance between A,B$ $R_X = \Sigma d_{X,N}$ where N \in L (total distance from X to all N) $r_X = R_X / (|L| - 2)$, where |L| = # of nodes (normalized divergence from X to all other nodes)

 $D_{A,B} = d_{A,B} - (r_A + r_B)$ (rate-corrected distance)

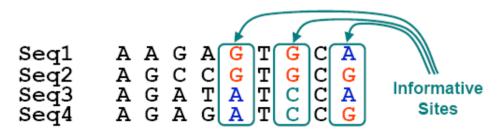
• Key points- 2 nodes with minimum D are always neighbors

- Algorithm
 - 1. Begin with star tree & all sequences as nodes in L
 - 2. Find pair of nodes A & B \in L with minimum D_{A,B}
 - 3. Create & insert new join (node K) w/ branch lengths

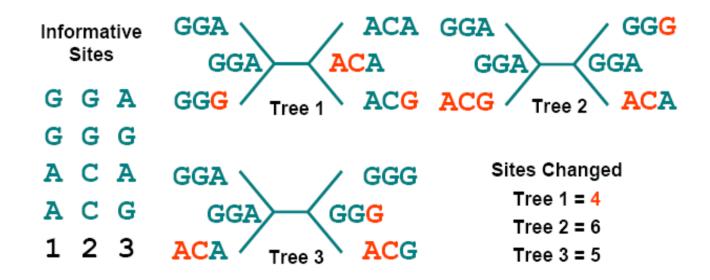

$$- d_{A,K} = \frac{1}{2} (d_{A,B} + r_A - r_B)$$

$$- d_{B,K} = \frac{1}{2} (d_{A,B} + r_B - r_A)$$

4. For remaining nodes $C \in L$, update distance to K as


$$- d_{K,C} = \frac{1}{2} (d_{A,C} + d_{B,C} - d_{A,B})$$

- 5. Insert K and remove A, B from L
- 6. Repeat steps 2–5 until only two nodes left


Maximum parsimony

- Maximum parsimony
 - Minimize number of sequence change in tree
 - Assume fewest changes is most likely
- Informative site
 - Must have more than 2 different bases and each of them at least appears in two sequences.

Maximum parsimony

- Most parsimony tree
 - Tree with fewest total number of changes at informative sites.

Maximum parsimony

Weakness:

- Misleading if rates of changes vary among branches
- long branch attraction which is random similarity due to long periods of divergence among *some numbers* of clades.

Maximum Likelihood

- Goal
 - Given the probability P(x|y,t) for a sequence y to evolve (mutant) to sequence x along an edge of length t (time)
 - Find tree that has highest probability of taking place
- Mutation probabilities
 - Bases: Jukes-Cantor model; Kimura two parameters model
 - Amino acids: PAM; BLOSUM.
- Algorithm
 - Search over all tree topologies & sequences alignments
 - For each topology & assignment, search all branch lengths.
- Characteristics
 - Very computationally expensive

Robustness and reliability

- Bootstrapping is a statistical technique that can use random resampling of data to determine sampling error for tree topologies
- Bootstrapp proportions are not the same as confidence intervals. There is no simple mapping between bootstrap values and confidence intervals.

Computer Software for Phylogenetics

- PHYLIP is a free package that includes 30 programs that compute various phylogenetic algorithms on different kinds of data.
- The GCG package (available at most research institutions) contains a full set of programs for phylogenetic analysis including simple distance-based clustering and the complex cladistic analysis program PAUP (Phylogenetic Analysis Using Parsimony)
- **CLUSTALW** is a multiple alignment program that includes the ability to create tress based on **Neighbor Joining.**
- MrBayes is a program for Bayesian inference of phylogeny using Markov Chain Monte Carlo methods.
- MEGA is an integrated tool for automatic and manual sequence alignment, inferring phylogenetic trees, mining web-based databases, estimating rates of molecular evolution, and testing evolutionary hypotheses.

Thanks