Multiple Sequence Alignment

Group 1 Liu Kai

Why

- Identification of conserved sequence pattern and motif
- Essential prerequisite to building phylogenetic tree
- Requirement to predict protein secondary and tertiary structure
- Designing degenerate PCR

Algorithms

Exhaustive Algorithm 1

Heuristic Algorithm 1

Exhaustive Algorithm

- Dynamic Programming
- ----Find OPTIMAL alignment
- ----But NOT practical for multiple sequence alignment

Dynamic Programming

 The maximum match can be determined by representing in a two-dimensional array, all possible pair combinations that can be constructed from the amino acid sequences of the proteins, A and B, being compared.

Needleman S. & Wunsch C. *J. Mol. Bol.* 48, 443-453 (1970)

Heuristic Algorithm

 Find solutions among all possible ones, but they do NOT guarantee that the best will be found, therefore they may be considered as approximately and not accurate algorithms. These algorithms, usually find a solution close to the best one and they find it fast and easily.

Heuristic Algorithm

- Progressive Alignment
 Clustal and Tcoffee
- Iterative Alignment

Block-Based Alignment

Progressive Alignment

• Stepwise assembly of multiple alignment

First step:

 Conduct pairwise alignments for each possible pair of sequences and get similarity scores from them.

Second step:

• Calculate a guide tree

Third step:

 Align closest pair using dynimic programming and generate a consensus sequence A/B

Forth step:

 Align A/B and C using dynimic programming and generate a consensus NEW sequence A/B/C

Fifth step:

 Align A/B/C and D using dynimic programming and complete the multiple sequence alignment

Clustal

E	MBL-EBI	Search All Databases	 Enter Text Here 	GO Reset (?) Advanced Sear	Give us feedback
					5
	CLUSIAL W (1.	83) multiple seque	nce alignment		
	FOS_RAT	MMFSGFNADYEASSS	RCSSASPAGDSLSYYHSPADSFS	SMGSPVNTQDFCADLSVSSANF 60	0
	FOS_MOUSE	MMFSGFNADYEASSS	RCSSASPAGDSLSYYHSPADSFS	SMGSPVNTQDFCADLSVSSANF 60	0
	FOS_CHICK	MMYQGFAGEYEAPSS	RCSSASPAGDSLTYYPSPADSFS	SMGSPVNSQDFCTDLAVSSANF 60	0
	FOSB_MOUSE	-MFQAFPGDYDS-GS	RCSS-SPSAESQYLSSVDSFG	SPPTAAASQE-CAGLGEMPGSF 54	4
	FOSB_HUMAN	-MFQAFPGDYDS-GS	RCSS-SPSAESQYLSSVDSFG	SPPTAAASQE-CAGLGEMPGSF 54	4)r
		: .:*:: .*	**** **:.:* * ****.	* : :*: *:.**	
	FOS RAT	IPTVTAISTSPDLQW	LVQPTLVSSVAPSQTR	APHPYGLPTPS-TGAYARAGVV 1:	12
	FOS MOUSE	IPTVTAISTSPDLQW	LVQPTLVSSVAPSQTR	APHPYGLPTQS-AGAYARAGMV 1:	12
	FOS_CHICK	VPTVTAISTSPDLQW	LVQPTLISSVAPSQNR	G-HPYGVPAPAPPAAYSRPAVL 11	12
	FOSB_MOUSE	VPTVTAITTSQDLQW	LVQPTLISSMAQSQGQPLASQPP	AVDPYDMPGTSYSTPGLS 1:	10
	FOSB_HUMAN	VPTVTAITTSQDLQW	LVQPTLISSMAQSQGQPLASQPP	VVDPYDMPGTSYSTPGMS 11	10
		********	*****	·**·:* : *::	_
	FOS RAT	KTMSGGRAOSTG	BRGKVF	OLSPEEEKRRIRRERNKMAAA 1	52
	FOS_MOUSE	KTVSGGRAOSIG	RRGKVE	OLSPEEEKRRIRRERNKMAAA 1	52
	FOS CHICK	KAP-GGRGOSIG	BRGKVE	OLSPEEEKRRIRRERNKMAAA 1	51
	FOSB MOUSE	AYSTGGASGSGGPST	STTTSGPVSARPARARPREPEE	TLTPEEEEKRRVRRERNKLAAA 1	70
	FOSB HUMAN	GYSSGGASGSGGPST	SGTTSGPGPARPARARPRRPRE	TLTPEEEEKRRVRRERNKLAAA 1	70
		** * *	** : *	* *******	
	FOS_RAT	KCRNRRRELTDTLQA	ETDQLEDEKSALQTEIANLLKEK	EKLEFILAAHRPACKIPNDLGF 2:	12
	FOS_MOUSE	KCRNRRRELTDTLQA	ETDQLEDEKSALQTEIANLLKEK	EKLEFILAAHRPACKIPDDLGF 2:	12
	FOS_CHICK	KCRNRRRELTDTLQA	ETDQLEEEKSALQAEIANLLKEK	EKLEFILAAHRPACKMPEELRF 2:	11
	FOSB_MOUSE	KCRNRRRELTDRLQA	ETDQLEEEKAELESEIAELQKEK	ERLEFVLVAHKPGCKIPYEEG- 22	29
	FOSB_HUMAN	KCRNRRRELT DRLQA	ETDQLEEEKAELESEIAELQKEK	ERLEFVLVAHKPGCKIPYEEG- 22	29
		********* ***	*****	* *** * ** * ** *	
	FOS RAT	PEEMSVTS-LDLTGG	LPEATTPESEEAFTLPLLNDPEP	K-PSLEPVKNISNMELKAEPFD 2	70
	FOS MOUSE	PEEMSVAS-LDLTGG	LPEASTPESEEAFTLPLLNDPEP	K-PSLEPVKSISNVELKAEPFD 2	70
	FOS CHICK	SEELAAATALDLG	APSPAAAEEAFALPLMTEAPP	AVPPKEPSGSGLELKAEPFD 20	65
	FOSB MOUSE	PGPGPLAEVRDLPG-	STSAKEDGFGWLLPPPPPP	PLPFQ 20	67
	FOSB HUMAN	PGPGPLAEVRDLPG-	SAPAKEDGFSWLLPPPPPP	PLPFQ 20	67
	_	: **	: *:.* * . *	* * •	
L			or oblactions in any oblaction form		пер

http://www.ebi.ac.uk/clustalw/

Clustal

• Important features:

☺ Flexibility of using substitution matrices

O Adiustable dap penality

Closely related sequences— BI Divergent excursion A gap near a series of hydrophobic residues carries more penalties than the one next to series of hydrophilic residues

Downweighting redundant and closely related groups of sequences in the alignment by a certain factor

Clustal

• Drawbacks:

Global alignment-based method
 →not suitable for comparing sequences of different lengths

 "Greedy" nature: Once an error, always an error
 Tcoffee

Tcoffee

Journal of Molecular Biology, **302**, 205-217, (2000)

Tcoffee vs Clustal

• Tcoffee indeed outperforms Clustal when aligning moderately divergent sequences

Slower

• NOT completely solve the problems

Tcoffee

	T-COFFEE, Ve Cedric Notre CPU TIME:1 s SCORE=62 * BAD AVG GOO	rsion_4.99(Wed Mar 21 17:43:28 2007) dame ec.
	FOS CHICK FOS MOUSE FOS RAT FOSB HUMAN FOSB_MOUSE	: 59 : 65 : 65 : 60 : 60
	FOS_CHICK FOS_MOUSE FOS_RAT FOSB_HUMAN FOSB_MOUSE	MMYQGFAGEYEAPSSRCSSASPAGDSLTYYPSPADSFSSMGSPVNSQD MMFSGFNADYEASSSRCSSASPAGDSLSYYHSPADSFSSMGSPVNTQD MMFSGFNADYEASSSRCSSASPAGDSLSYYHSPADSFSSMGSPVNTQD -MFQAFPGDYD-SGSRCSS-SPSAESQYLSSVDSFGSPPTAAASQE -MFQAFPGDYD-SGSRCSS-SPSAESQYLSSVDSFGSPPTAAASQE
	cons	*:* .:*: <mark>.***</mark> ** <mark>**:.:* *</mark> ****.* : :*:
	FOS_CHICK FOS_MOUSE FOS_RAT FOSE_HUMAN FOSE_MOUSE	FCTDLAVSSANFVPTVTA I STSPDLQWLVQPTL I SSVAPSQNR FCADLSVSSANF I PTVTA I STSPDLQWLVQPTLVSSVAPSQTR FCADLSVSSANF I PTVTA I STSPDLQWLVQPTLVSSVAPSQTR - <mark>CAGLGEMPGSFV</mark> PTVTA I TTSQDLQWLVQPTL I SSMAQSQGQPLASQ - <mark>CAGLGEMPGSFVPTVTA I TTSQDLQWLVQPTL I SSMAQSQGQPLA</mark> SQ
	cons	*:.**:****************************
	FOS_CHICK FOS_MOUSE FOS_RAT FOSE_HUMAN FOSE_MOUSE	<mark>G</mark> -HPYGVPAPAPPAAYSRPAVLKA-PGGRGQSI
	cons	· · **.:* · · · · · · · · · · · · · · · · · · ·

http://tcoffee.vital-it.ch/cgi-bin/Tcoffee/tcoffee_cgi/index.cgi

2. Using a combination of multiple alignment programs

3. Refine results manually or automatically

