The bioinformatic analysis of transcription factor SPL7 in *Arabidopsis thaliana*

2015-06-27

乔睿 杨彦芝 陈一欧 李西营

Background

CRR1 & SPL7

- The transcription factor Copper response regulator1 (Crr1), containing a SBP (for SQUAMOSA promoter binding protein) domain, mediates this switching of photosynthesis machinery in response to copper deficiency and is also hypothesized to be somehow involved in copper sensing.
- □ SPL7 is homologous to Copper response regulator1, the transcription factor that is required for switching between plastocyanin and cytochrome c6 in response to copper deficiency in *Chlamydomonas reinhardtii*.
- Squamosa promoter-binding-like protein 7 is a trans-acting factor that binds specifically to the consensus nucleotide sequence 5'-TNCGTACAA-3'.

Structure of CRR1 and SPL7

Diagram of the motif structures of Crr1 and SPL7. A triangle indicates the position from which the C-terminal part is truncated by the T-DNA insertion In spl7. The blue boxes indicate the SBP domain, and the pink boxes describe a putative nuclear localization signal. The yellow boxes show an unknown motif that is conserved between Crr1 and SPL7, and the green boxes indicate putative metal binding motifs.

Yamasaki et al. The Plant Cell 2009

The spl7 Phenotype in Various Concentrations of Copper

Growth phenotypes of the wild type, *spl7*, and SPL7 comp lines grown for 3 weeks on MS medium containing various concentrations of copper

Yamasaki et al. The Plant Cell 2009

SPL7 interacts directly with the miR398 promoter and miR408 promotor via its GTAC motifs.

Yamasaki et al. The Plant Cell 2009 Zhang et al. The Plant Journal 2013

MIR408 is regulated by SPL7 at the transcription level

GUS staining of transgenic seedlings expressing the pMIR408:GUS reporter gene in the wild type (pMIR408:GUS/WT) or the *spl7* (pMIR408: GUS/spl7) background. Seedlings were grown under different copper regimes, as indicated.

Zhang et al. The Plant Journal 2013

Gene analysis

Gene information

RefSeqⁱ NP_197384.1. NM_121888.2. [Q8S9G8-1] NP_850850.1. NM_180519.1. [Q8S9G8-2]

Pairwise Alignment Result

LENGTH	SCORE	IDENTITY	SIMILARITY	GAPS
2406	11591.5	2328/2406 (96.8%)	2328/2406 (96.8%)	78/2406 (3.2%)

AJ011613.1_cd	2001	GCATCAAAGCCCTATAGAGTCAAAGGTGAATCCTCCTTCGTCAGGTTGCT	2050
NM_180519.1_c	2001	GCATCAAAGCCCTATAGAGTCA	2022
AJ011613.1_cd	2051	GTTGTGTGAGTAGTCAGAAGGACATACCATCAAGAATATTAAACTTCAAT	2100
NM_180519.1_c	2022		2022
AJ011613.1_cd	2101	AAGGATCCTGAAGCAGGATTAGATTGTAAAGAGAGAATACAGGCAGACTG	2150
NM_180519.1_c	2023	AAGGATCCTGAAGCAGGATTAGATTGTAAAGAGAGAATACAGGCAGACTG	2072
TSC 19920 1			

Dot Matcher

ORF prediction

F2

PlotORF

ORF verification

Pairwise Alignment Result

LENGTH	SCORE	IDENTITY	SIMILARITY	GAPS
810	4272.0	801/810 (98.9%)	801/810 (98.9%)	9/810 (1.1%)

1	ILSEIEDSQMSSLSQSPPPPEMDIQPPALVNDDPSTYSSALWDWGDLLDF	50
1	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	41
51	AADERLLVDQIHFPPVLSPPLPPLIPTQTPAESELDPSPEESGSGSDRVR	100
42	aaderllvdgihfppvlspplppliptgtpaeseldpspeesgsgsdrvr	91

Digestion analysis

	MspJI	
	LpnPI	MspJI
	MboI	MspJI
	MmeI	HpyAV
MspJI	NdeII	MspJI
MwoI	Kzo9I	SsiI
BstMWI	DpnII	AciI
HpyF10VI	BssMI	MspJI
SsiI	BfuCI	BspACI
AciI	Sau3AI	MspJI
BspACI	BstMBI	BslI
BCCI	Bsp143I	AfiI AfiI
MspI	MalI	BseLI
LpnPI HpaII	DpnI	Bsc4I
SgeI HapII	BstKTI	FaiI
MspJI BsiSI	MspJI	MnlI
ATGTCTTCTCTGTCGCAATCGCCACCACCGCCGGAGATGGATATCCAACCCCCGGCATTGGT	TAACGATGATCCTTCCAC	TTATTCCTCCGCTTTATGGG
10 20 30 40 50 60	70 8	0 90 100
	: :	:
TACAGAAGAGACAGCGTTAGCGGTGGTGGCGGCCTCTACCTATAGGTTGGGGGGCCGTAACCA	ATTGCTACTAGGAAGGTG	AATAAGGAGGCGAAATACCC
	/// ///// /	/ / / /// //
BsiSI		MspJI
HapII		
HpaII		MnlI
MspI		MspJI
BccI		Bsc4I
BspACI		BseLI
MspJI		MspJI
AciI		AfiI
SsiI		BslI
HpyF10VI		BspACI
BstMWI		AciI
MwoI		SsiI
MspJI		MspJI
SgeI		MspJI
LpnPI		HpyAV
	Msp	JI
	Bsp143I	
	BstMBI	

Protein analysis

SMART prediction

Phylogenetic tree

Mega6

SBP/DNA-binding domain

weblogo.berkeley.edu

135-212AA 锌指结构相当保守

SBP/DNA binding domain

SPL12

DNA binding domain

SPL7与SPL12 DNA结合域的fit结果:能够较好的fit上,该结合域也相当保守

Conclusion:

- 1. No metal binding domain ?
- 2. GTAC binding sequence in SBP domain?
- 3. Evolution analysis of SPL7?

Main references

- 1. Yamasaki H et al. (2007) Regulation of copper homeostasis by microRNA in *Arabidopsis*. J Biol Chem. 282: 16369–16378.
- 2. Yamasaki H et al. (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in *Arabidopsis*. Plant Cell. 21: 347–361.
- 3. Bernal M et al. (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in *Arabidopsis*. Plant Cell. 24: 738-761.
- Zhang H, Li L. (2013) SQUAMOSA promoter binding protein-like7 regulated microRNA408 is required for vegetative development in *Arabidopsis*. Plant J. 74: 98–109.
- 5. Gayomba SR et al. (2013) The CTR/COPT-dependent copper uptake and SPL7dependent copper deficiency responses are required for basal cadmium tolerance in *A. thaliana*. Metallomics. 5: 1262-1275.
- Zhang H et al. (2014) MicroRNA408 Is Critical for the HY5-SPL7 Gene Network That Mediates the Coordinated Response to Light and Copper. Plant Cell. 5(9):1262-75.

Acknowledgement

