Maf Family TF Analysis Based on RNA-seq of Developmental Liver and Pancreas

Reporter: Yuwei Zhang Group Members: Yingla Zhang Yongjun Li Yitao Zheng Yuwei Zhang

Outline

RNA-seq of Developmental Liver and pancreas

Data processing

Maf family transcription factors

The evolution & structure of Mafa & Mafb

RNA-seq of Developmental Liver and pancreas

- I. Liver and pancreas arise from endoderm at E10.5.
- II. RNA-seq could detect the differential transcriptom of two organs.

Data processing

Data Processing Step I

S NCBI	Gene Expression Omnibus
HOME SEARCH SITE MAP	GEO Publications FAQ MIAME Email GEO
NCBI > GEO > Accessi	on Display ? Not logged in Login ?
Click the accession to see	
Scope: Self 💽 F	ormat: HTML Amount: Quick GEO accession: GSE40823

Data Processing Step II quality control

2. FastQC	
fastqcnoextract	SRR567654_1.fastq
fastqcnoextract	SRR567654_2.fastq

score=-10log₁₀ (sequenceing error rate)

Data Processing Step III Mapping

zhangyw@yp:~\$ tophat2 /hsr/local/data/bowtie2-index/mm9 SRR567654_1.fastq SRR567654_2.fastq
[2014-06-11 09:40:20] Beginning TopHat run (v2.0.11)
[2014-06-11 09:40:20] Checking for Bowtie Bowtie version: 2.2.2.0
[2014-06-11 09:40:20] Checking for Samtools Samtools version: 0.1.18.0
[2014-06-11 09:40:20] Checking for Bowtie index files (genome)
[2014-06-11 09:40:20] Checking for reference FASTA file
[2014-06-11 09:40:20] Generating SAM header for /usr/local/data/bowtie2-index/mm9
[2014-06-11 09:40:38] Preparing reads
U C

	А	В	С	D	E	F
1	Sample	Total_read	Non-uniq	Uniq	Mapping Efficiency	Unique Mapping Efficiency
2	E10.5_DP	2.33E+8	1.79E+7	1.72E+8	81.74%	74.04%
3	E10.5_VP	2.40E+8	1.81E+7	1.77E+8	81.25%	73.75%
4	E10.5_LV	2.65E+8	2.38E+7	1.86E+8	79.25%	70.28%

Number of hits Mapping quality score=-10log₁₀ (mapping error rate) pon-unique mapping yup@ngs ~/work/RNA-seg/rawData/tophat SRR567654 \\$ samtools view accepted hits.bam [more 433 chr1 3005262 101M chr16 36976948 ccccbccc`caccdddddeeeeeggg SRR567654.17949297 giiiiiiiiiiiiiiiihhghiiiiiiiiihhiiiiihiiiiihiiiihiiiihiiiihhiigggggeeeeeba YT:Z:UU NH:i:20 CC:Z:chr10 AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 CP:i:66424155 HI:i:0 401 chr1 3005262 0 101M chr4 126741935 SRR567654.51681684 cccdcccccccddcddceeeeeggg AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 YT:Z:UU NH:i:20 CC:Z:chr10 CP:i:101688779 HI:i:0 CCATATCTTCGAGGCTTTTCCCTACTTTCTCCTCTGTAAGTTTCAGTGTCTCTGGTTTTATGTGGAGTTCCTTAATCCACTTAGATTTGACCTTAGTACAA SRR567654.49640892 321 chr1 3006356 0 101M chr7 136493492 bbbeeeeegggggiiiiiiiiiiiiiiiiiiii YT:Z:UU NH:i:8 CC:Z:= CP:i:97849347 HI:i:0 AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 SRR567654,50913589 129 chr1 3007009 0 101M = 105435855 102428947 AS:i:-6 XN:i:0 XM:i:1 XO:i:0 XG:i:0 NM:i:1 MD:Z:4A96 YT:Z:UU NH:i:20 CC:Z:= CP:i:3007009 HI:i:0 chr1 SRR567654, 50913589 385 3007009 0 101M chr12 48609544 CGCCCATGTATTTTATATTATTTGTGACTATTGAGAAGGGT GTTGTTTCCCTAATTTCTCTCAGCCTGTTTATCCTTTGTGTACAGAAAGGCCATTGAC bbbeeeeqfqqqifhiiiiiiihqhi AS:i:-6 XN:i:0 XM:i:1 XO:i:0 XG:i:0 NM:i:1 MD:Z:4A96 YT:Z:UU NH i:20 CC:Z:= CP:i:3007009 HI:i:1 Unique mapping yup@ngs ~/work/RNA-seq/rawData/tophat SRR567654 2\$ samtools view accepted hit.bam |awk '(\$5 >20)' [more AAAAAACTAAATTAAATTCATGTTTTAGATCCATCCTTACTTG chr1 3143955 50 101M = 3144036 182 CATTTTTCCAGTTTAGACTAGCTTCTAGCCTTTTAACTTTATGGCAATAGTACATCA bbbeeeeegggggiiiiiii SRR567654.88689488 163 iiiiiihhhiiiiiiiiiiiiiiiiiiiiiiiiihhhiiaafaaaeeeeecdddcdcbbcdbc AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 YT:Z:UU NH:i:1 3144016 50 CTAGCTTCTAGCCTTTTAACTTTATGGCAATAGTACATCAGAGACTGTATATTCAGACTTAGTAAAATTAGTCATTTAATAGAGTCATAATGATTTTTCTC SRR567654.58921549 99 chr1 101M = 3144024 109 bbbeeeeegggggiiiiidh YT:Z:UU NH:i:1 AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 SRR567654.58921549 chr1 3144024 50 101M = TAGCCTTTTAACTTTATGGCAATAGTACATCAGAGACCTGTATATTCAGACTTAGTAAAATTAGTCATTTAATAGAGTCATAATGATTTTTCTCCCTTTCTTC ddcceeeeddaggggggiii 147 3144016 -109 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 YT:Z:UU NH:i:1 AS:i:0 XN:i:0 SRR567654.57184711 99

chr1 3144026 50 101M = GCCTTTTAACTTTATGGCAATAGTACATCAGAGACTGTATATTCAGACTTAGTAAAATTAGTCATTTAATAGAGTCATAATGATTTTTCTCCTTTCTCAG 3144045 120 a eeeeeggggghifgfeg YT:Z:UU NH:i:1 ffhhiidfghiiiiihiiihhbfgfhbhhifeggfdffgfghfh]bgfiig dZbdecd]b AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 TTTATGGCAATAGTACATCAGAGACTGTATATTCAGACTTAGTAAAATTAGTCAT TAATAGAGTCATAATGATTTTTCTCCCTTTCTTCAGTGTGACCAGC chr1 3144036 50 101M = 3143955 -182 dbddddeeeeeeggggggg

AS:i:0 XN:i:0 XM:i:0 XO:i:0 XG:i:0 NM:i:0 MD:Z:101 YT:Z:UU NH:i:1

SRR567654,88689488

83

Data Processing Step IV Differential expression analysis

Count the reads of each gene using htseq-count with gene structure annotation: Ensembl mm9 (downloaded from UCSC)

Command :

zhangyw@yp:/home/yp/RNA-seq/tophat_SRR567654_2\$ htseq-count -o liver.reads accepted_hits.bam_mm9_convert.GTF

Output :

zhangyw@yp:~\$	more	liver.reads
ENSMUSG000000	0001	8673
ENSMUSG000000	0003	0
ENSMUSG000000	0028	1279
ENSMUSG000000	0031	136477
ENSMUSG000000	0037	224
ENSMUSG000000	0049	2
ENSMUSG000000	0056	2059
ENSMUSG000000	0058	31
ENSMUSG000000	0078	671
ENSMUSG000000	0085	1064
ENSMUSG000000	0088	1482
ENSMUSG000000	0093	126
ENSMUSG000000	0094	0

DESeq script:

libra:	(DESe	≥q2)	
librar	C. RC	107	rewer"
library	y("gp]	lots"	

directory <- getwd()
sampleFiles <- grep("*reads",list.files(directory),value=TRUE)</pre>

in this step, define the condition of experiments sampleCondition <- sub("(*).read_count","\\1",sampleFiles)

experiment<-cbind(c("Pancreas", "Pancreas", "Liver"),c("10.5", "10.5", "10.5"))
colnames(experiment)<-c("Tissue", "Time")</pre>

ddsHTSeq <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,directory = directory,design= ~ Tissue

colData(ddsHTSeq)\$Tissue <- factor(colData(ddsHTSeq)\$Tissue,levels=c("Pancreas","Liver"))

dds <- DESeq(ddsHTSeq)
colnames(dds)<-c("10.5DP","10.5VP","10.5Lv")
res <- results(dds)</pre>

write.table(res,file="10.5Pancreas Liver diff.xls")

	TFs	fold change(liver/pancreas)	
	STX1A	0.734850401	
	STXBP1	0.321740732	
	SYP	0.243882741	
	SYT4	0.46690488	
	SYT7	0.321672298	
/	MAFA	0.418045483	-
<u> </u>	MAFB	0.166969619	-
	KCNK3	0.776610274	
	KCNMA1	0.27431245	
	KCNMB2	2. 272147303	
	KCNN1	1.557423638	
	KCNN3	0.544070131	
	SCN1A	0.808009664	

Output:

Maf family transcription factors

Yan Hang and Roland Stein

MafA and mafB is expressed in pancreatic β -cells and is essential for β -cell maturation and glucose-induced insulin expression.

Outline of MafA and MafB

- I. The maf family can be subdivided into two groups. Large mafs are proto-oncoproteins and are overexpressed in many human cancers.
- II. Small mafs, MafF, MafG, andMafK, lack an activation domain and act as repressors or rely on dimerization partners for their transcriptional activity.
- III. They have the simplest DNA-binding motif, with two long α-helices gripping DNA like a pair of chopsticks.

Signaling network of mafA

Description	v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A (avian) [S eurce:MGI Symbol;Acc :MGI:2673307]
Location	Chromosome 15: 75,746,843,75,747,922 reverse strand.
INSDC coordinates	chromosome:GRCm38.CM001008.2:75746843:75747922:1
Transcripts	This gene has 1 transcript (splice variant) Show transcript table

multiple sequence alignment program--- clustalW2

MAFA HIMAN	GНИНGAННAA		213
MAFA MOUSE	GHHHGAHHT A	HHHSAHHHHHHHGGSGHHGGGAGH	218
MAFA COLTA	A	AHHMAHHHHH	164
MAFA CHICK	A	ADDDNADDDDDDD	164
R7VU13 COLLI	A	AHHEGHHHHHH	153
MAFA DANRE	ATN	GHARVAHAHAGAH	187
MAFA XENTR	S	GHANQVIAAAAAAAA	166
L9L3A3 TUPCH			
M7BKF9 CHEMY			
G5AWF8 HETGA			
E2A807 CAMFO	EYYSGSSAGGGMLPTSGSVMQGMEDSMQ	GIPMOPGRPLSVCSVSSCGANGPNPAHRVSNG	331
F4WNH1 ACREC	EYYSGPGTGGGMLPAGGSVMQGMEDSIG	GLAIQPGRPLSVCSVSSCGAGGPTPAHRSGNG	284
E2B394 HARSA	DYYGGPGTGSGMLPAGGGVLQGIEDSMG	OGMSLOPGRPLSVCSVSSCGAGGPSPAHRAGNG	312
		••	
MAFA HUMAN	GGG-AGHHVRLEERFSDDQLVSMSVREI	NROLRGFSKEEVIRLKOKRRTLKNRGY AQSCR	272
MAFA MOUSE	GGGGAGHHVRLEERFSDDQLVSMSVREI	NROLRGFSKEEVIRLKOKRRTLKNRGY AQSCR	278
MAFA COLTA	HLRLEERFSDDQLVSMSVREI	NRQLRGFSKEEVIRLKQKRRTLKNRGY AQSCR	217
MAFA CHICK	HLRLEERFSDDQLVSMSVREI	NROLRGFSKEEVIRLKONRRTLKNRGY AQSCR	217
R7VU13 COLLI	HLRLEDRFSDDQLVSMSVREI	NROLRGFSKEEVIRLKOKRRTLKNRGY AQSCR	206
MAFA DANRE	AHARLEDRFSDEQLVSMTVREI	NROLRGFSKEEVIRLKOKRRTLKNRGYAQSCR	241
MAFA XENTR	HLRLEDRFSDEQLVSMSVREI	NROLRGFSKEEVIRLKOKRRTLKNRGY AQSCR	219
L9L3A3 TUPCH	GSVEDRFSDDQLVSMSVREL	WRHLRGFTKDEVIRLKOKRRTLKNRGY AQSCR	194
M7BKF9 CHEMY	LHFDDRFSDEQLVTMSVREI	NRQLRGVSKEEVIRLKQKRRTLKNRGY AQSCR	178
G5AWF8 HETGA	DDSDSAGPASPWDIRAL	P-IVPVHSKEEVIRLKOKRRTLKNRGYAQSCR	78
E2A807 CAMFO	LYSNCSSSNAQEELMDDELLMSLSVREI	NKRLHGCPREQVVRLKOKRRTLKNRGY AQNCR	391
F4WNH1 ACREC	LYSNCNGTNPQEELMDDELLMSLSVREI	NKRLHGCPREQVVRLKQKRRTLKNRGY AQNCR	344
E2B394 HARSA	LYSNCNGSNAQEELMNDELLMSLSVREI	NKRLHGCPREEVVRLKQKRRTLKNRGY AQNCR	372
-		* : .::*:*****:************************	
MAFA_HUMAN	FKRVQQRHILESEKCQLQSQVEQLKLEV	/GRLAKERDLYKEKYEKLAGRGGPGSAGGA	329
MAFA_MOUSE	FKRVQQRHILESEKCQLQSQVEQLKLEV	/GRLAKERDLYKEKYEKLAGRGGPGGAGGA	335
MAFA_COTJA	YKRVQQRHILENEKCQLQSQVEQLKQEV	SRLAKERDLYKEKYEKLAARGFP	268
MAFA CHICK	YKRVQQRHILENEKCQLQSQVEQLKQEV	SRLAKERDLYKEKYEKLAARGFP	268
R7VUI3_COLLI	YKRVQQRHILENEKCQLQSQVEQLKQEV	TRLAKERDLYKEKYEKLAGRGFP	257
MAFA_DANRE	YKRVQQRHMLESEKCTLQSQVEQLKQDV	ARLIKERDLYKEKYEKLASRAFNGGGN	296
MAFA_XENTR	YKRVQQRHILETEKCQLQSQVEQLKQEV	/SRLAKERDLYKDKYEKLASRSFT	270
L9L3A3_TUPCH	YKRVQQKHHLENEKTQLIQQVEQLKQEVS	SRLARERDAYKVKCEKLANSGFR 2	245
M7BKF9 CHEMY	FKRVQQRHVLESEKNQLLQQVEHLKQEI	SRLVRERDAYKEKYEKLVSNGFR	229
G5AWF8_HETGA	FKRVQQRHILESEKCQLQSQVEQLKLEV	/GRLAKERDLYKEKYEKLAGRGGPGGTGGA	135
E2A807_CAMFO	SKRLQQRQDLETTNRNLQNELQRTKID	/ARLQQERDLYKQRYEMLRARQNHHHNHNHSHH	451
F4WNH1_ACREC	SKRLQQRQDLESTNRNLQNELQRAKIEI	TRIQQERDLYKQRYDMLRTRQSHHHNHNHNH	404
E2B394_HARSA	SKRLQQRHDLETTNRNLQNELQRTKVEI	SRLQQDLTTDREESAGLREAVSQSRLKP	428
-	**:**:: **. : * .:::: * ::	: *: : * . : :	

EMBL-EBI		Services	Research	Training	About us	٩
ClustalW2						
nput form Web services	Help & Documentation				< Share	e 🗪 Feedback
ools > Multiple Sequence A	lignment > ClustalW2					
ClustalW2						

将比对结果输入weblogo中寻找sequence logo

Sequence Conservation

Secondary structure of MAFA_MOUSE MAFB_MOUSE

Structure of MAFA_MOUSE MAFB_MOUSE

Phylogenetics Reconstruction

FalseTest of substitution saturation

FalseTest of substitution saturation (Xia et al. 2003; Xia and Lemey 2009)

Analysis performed on fully resolved sites only.

Testing whether the observed Iss is significantly lower than Iss.c.

Part I. For a symmetrica	al tree.
Prop. invar. sites	. 0000
Mean H	.0000
Standard Error	. 0000
Hmax	1.5321
Iss	v 0000
Iss.c	3.0330
Т	3606170510843870000000000.0000
DF	2
Prob (Two-tailed)	. 0000
95% Lower Limit	.0000
95% Upper Limit	. 0000
···· · · · · · · · · · · · · · · · · ·	Market Strates
Part II. For an extreme unlikely) tree.	asymmetrical (and generally very
Iss.c	19.3750
Т	2303625357637280000000000000000000
DF	2
Prob (Two-tailed)	⁻ .0000
,,	
95% Lower Limit	.0000
95% Upper Limit	0000
ter opper minite	

FalseTest of substitution saturation by DAMBE

Phylogenetic Maximum-parsimony tree of Maf family. Aliment of the sequence was made with ClustalX; this was used to derive phylogenetic tree with paup by the Maximum-parsimony method. Bootstrapping was carried out on 1000 replicates. Based on the tree Maf family consist of three clades.

Phylogenetic Neighbour-joining tree of Maf family. Aliment of the sequence was made with ClustalX; this was used to derive phylogenetic tree with mega5.0 by the minimum-parsimony method. Bootstrapping was carried out on 1000 replicates. Based on the tree Maf family consist of three clades.

Phylogenetic Maximum-likelihood tree of Maf family. Aliment of the sequence was made with ClustalX; this was used to derive phylogenetic tree with PHYLIP by the Maximum-likelihood method. Based on the tree Maf family consist of three clades.

Conclusion

RNA-seq could detect new genes important for development.

Maf family may have at least one replication during evolution.

Replication of maf family in Chordata may related to the origin of pancreas.

Acknowledgement

Professor Luo

- TA Yujian Kang
- ➢ All members of our team
- All classmates of PKU14 spring ABC

Question & Answer