

探究猫科动物毛色形成的遗传机制 ——MC1R基因为例的生物信息学研究 Molecular genetic basis of coloration in cat family: a case study of melanocortin receptor 1

实用生物信息学技术课程期末报告 Group 3: 郭生杰,宁小涵,杨晓彤,刘悦晨 汇报人:刘悦晨

2014.06.17

© E. A. Kuttapan / naturepl.com

ARKIVE Evolutionary Genetics of the MC1R in Vertebrates

- The molecular genetic basis of adaptive change in phenotype is a major outstanding issue in evolutionary biology.
- Evolutionary change in coat and plumage color is a promising system for making progress in this field.
- Several candidate genes are involved in evolutionary color change in mammals and birds.
- One such gene encodes the melanocortin-1 receptor (MC1R), which is one of the major regulators of eumelanin and pheomelanin content in hairs and feathers.

Coloration in domestication

- In domestic mammals such as mice and cattle:
- Gain of function MC1R mutations lead to darkening in the coat
- Loss of function MC1Rmutations lead to yellow or red coat
- MC1R mutations lead to coloration changes in sheep, horses, pigs, dogs guinea pigs, foxes, chickens et al.

MC1R Evolution Cases

Bananaquits (Coereba flaveola)

Fig. 1. in Mundy et al. (2006) Evolutionary genetics of the melanocortin-1 receptor in vertebrates.

> Two dimensional structure of the MC1R in Chinese yak -NH₂ Chinese yakow missense mutations DOODDOODDOODOG Chinese yakow silent mutations EL: Extracellular **TM: Transmembrance domains IL: Intracellular loops** p.Q1141 EL1 EL2 EL3 Extracellular Plasma TM2 TM1 membrane p.A291N p.I297T -COOH Intracellular p.125C .K238N p.67 IL1 p.L69P IL2 IL3 p.221] ARKIVE ARKIVE China Exploration & Research Society

Fig. 5. in Xi et al. (2012) Isolation and characteristics of the melanocortin 1 receptor gene (MC1R) in the Chinese yakow. Gene

The MC1R locus

- A seven trans-membrane (TM) G-coupled receptor (GPCR)
- 1000 members account for more than 1% of mammalian genomes
- The MC1R belongs to class A, rhodopsin family
- One of a five-member subfamily, the melanocortin (MC) receptors

Fig. 1. in Jean K. Lightner (2008) Genetics of coat color 1: the melanocortin 1 receptor (MC1R). Answers Research Journal.

Pigment production controlled by MC1R and ASIP

 \geq Melanistic coat coloration occurs as a common polymorphism in 13 of 37 felid species and reaches high population frequency in some cases but never achieves complete fixation. This mutant phenotype arose at least five times independently in the cat family. (Schneider et al. PLoS ONE 7(12), 2012)

THE CAT FAMILY TREE

Scientists compared DNA sequences in all 37 species of cats to determine the tree's branches. Fossils provided dates that indicate when major branching occurred.

37 SPECIES

8 LINEAGES O PANTHERA

These medium- to large-size cats (15 to 350 kilograms) are found throughout the world. They are the dominant predators in the ecosystems and on the continents that they inhabit, often specializing on large ungulate species. The lion, tiger, jaguar, leopard and snow leopard have an incompletely ossified hyoid, which allows them to roar. The two clouded leopard species do not roar.

BAY CAT

This poorly known group of small- to medium-size cats (two to 16 kilograms) is restricted to forested habitats in tropical Southeast Asia. Before the authors' genetic analyses, taxonomists did not consistently group these species together.

CARACAL

These medium-size cats (five to 25 kilograms), which are restricted to Africa, are distinctive and recognizable but were not typically grouped together before the authors' genetic work.

Asian golden cat

Bobcat

OCELOT

These small- to medium-size cats (1.5 to 16 kilograms) live in a broad range of habitats throughout Central and South America. They have a different number of chromosomes than other Felidae species do (36 instead of 38).

G LYNX

These medium-size cats (six to 20 kilograms) all have short tails and pointed ears. They live in temperate climates of North America and Eurasia and tend to specialize on hare and rabbit. With the exception of the Iberian lynx these species have been among the most widely exploited for their fur.

G PUMA

These diverse cats, from the small jaguarundi (three to 10 kilograms) to the large African cheetah (21 to 65 kilograms), originated in North America but have spread widely across four continents and remain broadly distributed. Pumas can be locally common and are legally hunted in parts of their range.

ASIAN LEOPARD CAT

These small cats (two to 12 kilograms) occupy a wide range of habitats in Asia, from mangrove forest to Mongolian steppe. The Asian leopard cat is the most common small cat in Asia.

O DOMESTIC CAT

These small cats (one to 10 kilograms), with the exception of the domestic cat, which is worldwide, have African and Eurasian distribution.

Rusty-spotted cat

Table 1. Available information on the occurrence of melanism in felid species.

Species	Strongest evidence and original references	Proposed mode of Inheritance	No. of offspring analyzed in the original literature source
Felis catus	Visual [30,31]	Recessive [5,30,31]	1 black offspring from a pair of wild type parents [30,31]
Felis chaus	Photograph [32]	Dominant [32]	1 wild-type offspring from a pair of melanistic parents [32]
Felis silvestris, F. lybica	Anecdotal [32,33]	-	-
Prionailurus bengalensis	Anecdotal [34,35]	-	-
Panthera pardus	Visual [36,37]	Recessive [36,37]	Total of 439 offspring [36,37]
Panthera onca	Visual [32]	Dominant [5,32]	Total of 81 offspring [32]
Panthera leo	Anecdotal [32]	-	<u> </u>
Panthera tigris	Anecdotal [34,38]	-	-
Panthera uncia	Anecdotal [39]	-	<u>_</u>
Neofelis nebulosa	Anecdotal [40,41]	-	-
Lynx rufus	Photograph [34]	-	<u>_</u>
Leopardus geoffroyi	Visual [42]	-	-
Leopardus guigna	Photograph [32,43,44,45]	-	-
Leopardus tigrinus	Visual [32,46]	-	-
Leopardus colocolo	Photograph [32]	Recessive [32]	2 black offspring from a pair of wild-type parents [32]
Acinonyx jubatus	Anecdotal [40,47]*	-	-
Puma concolor	Anecdotal [48]	-	-
Puma yagouaroundi	Visual [5]	Co-dominant [5]	-
Leptailurus serval	Video [33,34,39]	-	-
Caracal caracal	Anecdotal [34]	-	-
Caracal aurata	Anecdotal [49]	-	-
Pardofelis temminckii	Photograph [34,35]	Recessive**	-
Pardofelis marmorata	Photograph [50]	-	-

B MCIR 2	74(92)															32	24(108
	v	L	Е	Т	A	V	М	L	L	L	Е	A	G	A	L	A	G
D.cat	GTG	CTG	GAG	ACG	GCC	GTC	ATG	CTG	CTG	CTG	GAG	GCA	GGC	GCC	CTG	GCC	GGC
Jaguar-WT												G		Α			
Jaguar-Mel															AC.		
Jaguarundi-Dark														Α			
Jaguarundi-Red														Α			
Dog										G					Т	T	.CG
Pig						G	с					G					.C.
Cattle					A							C	T	.т.			AC.
Horse				.т.	A	Α	Τ					C	A	.т.			AC.
Human							C	C				C	T	A		.TG	.C.

(A) Nucleotide sequence of domestic cat *ASIP* exon 2, shown for a wild type and a black individual homozygous for the *ASIP*- Δ 2 allele.

(B) Sequences are shown from a domestic cat, wild-type jaguar allele, melanistic jaguar allele MC1R- $\Delta 15$, dark-brown jaguarundi allele MC1R- $\Delta 24$, and a reddish jaguarundi.

	Signai	peptide		Mature' N	-terminus	1	Basic centra	al domain	
Cat	MNILRLLLAT	LLVCLCLLTA	YS HLAPEEKP	RDDRNLRSNS	SMNMLDLSSV	SIVALNKKSK	KISRKEAEK-	KRSSKKKASM	[80]
Ppa		s		M	LP				[80]
Ppa-M		s		M	LP				[80]
Pte		s			LP				[80]
Pte-M		s			LP				[80]
Dog	F	SF		KS	.V.LFP				[80]
Fox	F	SF		KS	.V.LFP				[80]
Horse	.DVIH.F	SF	s	KSN	LSP	M	K		[80]
Cow	.DVS	F		EKN	LFP		K	PRP.	[80]
Pig	.DVT	FF	s s	K.E.S	LFP				[80]
Human	.DVT	FFF	NL	s	.V.LVP		Q.GA	E	[80]
Mouse	.DVT	.VSFFF.V	H L TL	GS	SF		R		[80]
Rat	.DVT	.VGFFV	H VFTL	GS.K	.I.SF		R	I	[80]

			1	2	34 5 6 7	8 9	10	
			1			1	1	
Cat	KNVAQ PRRPR	PPPPAP	CVAT	rds c kppapa	CCDPCASCQC	RFFRSS C S C R	VLNPT C	[136]
Ppa	R			.N				[136]
Ppa-M	R			.N	•			[136]
Pte	R							[136]
Pte-M	R					. W .		[136]
Dog	R	T.		.NS		A.T	S.R.	[136]
Fox	R	N.		.NS		A.T	s.s.	[136]
Horse	TKR	LLQ				A	TR	[136]
Cow	RT.	T.			F	A		[136]
Pig	.K	R	N	L.	F	A		[136]
Human	.K.VR	T.LS		.N		A	SLN.	[136]
Mouse	.KR	s.				G.A.T	N.	[136]
Rat	.KR	s.			N	G.A.T	N.	[136]

Proline-rich domain

Cysteine-rich C-terminal domain

Amino acid alignment of ASIP. Wild-type and melanistic sequences of each wild cat species are shown. Vertical lines demarcate the boundaries among the five functional domains proposed for ASIP, named above or below the sequences. Numbers 1–10 refer to the 10 conserved cysteine residues present in the C-terminal domain.

Fig. 1, 2 in Schneider et al. 2012 PLoS ONE 7(12)

What do we care about?

- Genetic basis of reddish and grey coloration in Asiatic Golden Cats
- Asiatic Golden Cat (*Pardofelis temminckii*)
- Carnivora Felidae
- NT (Near Threatened) in the IUCN Red List & Appendix I of CITES
- Geographic Range: from the Himalayan foothills into China and Southeast Asia.
- Habitat and Ecology: primarily found in forest habitats

Pardofelis temminckii

Materials Specificity: ancient DNA procedure

Type of damage	Process	Effects on DNA	Possible solutions
Strand breaks	Degradation by microorganisms Nucleases in the postmortem cell Other chemical processes	Reduction of overall DNA amounts Size reduction	PCR of overlapping fragments of short length
Oxidative lesions	Damage to bases	Base fragmentation	PCR of overlapping fragments of short
	Damage to deoxyribose residues	Sugar fragmentation	length
		Nucleotide modification	Multiple independent PCRs Cloning and sequencing of several clones
DNA crosslinks	Reactions between DNAs as well as DNA and other biomolecules	e.g., Maillard products	PTB (N-phenylacyl thiazolium bromide)
Hydrolytic lesions	 Loss of amino groups 1. adenine ⇒ hypoxanthine 2. cytosine ⇒ uracil 3. 5-methyl-cytosine 	Change of coding potential	Multiple independent PCRs Cloning and sequencing of several clones
	\Rightarrow thymine 4. guanine \Rightarrow xanthine		Paabo et al. (2004)

TABLE 1Overview over different types of damage in ancient DNA

Copyright: Photos taken by Yuechen Liu in Shanghai Science and Technology Museum

Phylogenetic tree construction (MEGA)

Acquire the MC1R nucleotides sequence from UCSC

Â	Genomes	Genome Browser	Tools	Mirrors	Downloads	My Data	Help	About Us				
Cat (Felis	s <i>catus</i>) G	enome Browser	Gateway	,								
				The UCSC Soft	Genome Browse tware Copyright (er was created by c) The Regents c	the <u>Genom</u> f the Univer	e Bioinformatics Grou sity of California. All rig	<u>p of UC Santa Cruz</u> . ghts reserved.			
		group gene	ome		assembly		pc	osition	search term			
	Mam	mal ‡ Cat	\$	Sep. 2011 (ICGS	C Felis_catus 6.2/fe	elCat5) 🗧 chr.	A2:53,225	,502-53,231,571	enter position, gene symbol or search terms	submit		
					I. I					_		
Click here to reset the browser user interface settings to their defaults.												
					track search a	dd custom tracks	track hub	s configure tracks a	and display			

Cat Genome Browser - felCat5 assembly (sequences)

UCSC Genome Browser assembly ID: felCat5 Sequencing/Assembly provider ID: International Cat Genome Sequencing Consortium Felis_catus-6.2 Assembly date: Sep. 2011 GenBank accession ID: GCA_000181335.2 NCBI Genome information: <u>NCBI genome/78 (Felis catus)</u> NCBI Assembly information: <u>NCBI genome/assembly/320798 (International Cat Genome Sequencing Consortium Felis_catus-6.2)</u> BioProject information: <u>NCBI Bioproject: 16726</u>

Felis catus (Dr. Kristina Narfstrom)

Search the assembly:

- By position or search term: Use the "position or search term" box to find areas of the genome associated with many different attributes, such as a specific chromosomal coordinate range; mRNA, EST, or STS marker names; or keywords from the GenBank description of an mRNA. <u>More information</u>, including sample queries.
- By gene name: Type a gene name into the "gene" box to go directly to the assembly location associated with a gene. More information.
- By track type: Click the "track search" button to find Genome Browser tracks that match specific selection criteria. More information.

Download sequence and annotation data:

- Using FTP (recommended)
- <u>Using HTTP</u>
- Data use conditions and restrictions
- Acknowledgments

Acquire the MC1R nucleotides sequence from UCSC

Â	Genome	es Genome I	Browser Tools	Mirrors D	ownloads	My Data	View	Help	About Us							
		UC	SC Genome	Browser	on Cat	Sep. 20 ⁷	11 (ICG	SC Fe	lis catu	ıs 6.2/f	elCat5) Asser	nbly			
			move <<<		>>>>>>	> zoom in (1.5x 3x	10x bas	e zoom ou	It 1.5x 3	x 10x	100x	•			
			chrE2:63	,720,844-63,721	,797 954 b	p. enter positi	on, gene syml	ol or search t	erms			go				
	ſ	chrE2 (a)		Fon						For)			h)		
]		
	Scale chrE2: 6	3,720,900	63,721,000	63,721,100	63,721,2	8 bases	53,721,300 Gan I	63," ocations	721,400	63,721,	500	63,721,600		63,721,700		
	Gap						Genscan Ge	ne Prediction	ns							
Other	·E2,2053 -{{}+						Non-Cat	RefSeq Genes								
	MC1R >>>>				·····	·····	RefS	eq Genes	·····			·····			·····	·››››
chr8 +	85258k					Mouse (Dec.	2011 (GRCm3	8/mm10)) Cha	ined Alignment	s						►>> N
chr19 +	56722k	chr18 - 66859k														
		chr18 - chr1 chr1	+ 68338k 0 – 41070k 1r18 – 68407k													
		•	chr9 – 20967k chr4 – 133210k											_		••
			chr5 - 146583K			Mouse (D	ec. 2011 (GR	:m38/mm10)) A	lignment Net		chr10 + 75	33k				
	5555		******	******	*****	*****	*****	*****	*****	*****	*****	******	*****	*****	*****	*****
Repea	itMasker					Re	eating Eleme	nts by Repeat	tMasker							
nove star	t	Click on a feat	ture for details. Clic	k or drag in the	base positio	on track to zo	om in. Clic	k side bars	s for track o	ptions. Dra	g side bar	s or labels	up or dov	vn to	m	ove end
< 2.0	>	reorder tracks	. Drag tracks left or	right to new po	sition.	hide all add	custom track) (teack but	ha) Caonfigur			rofrach			< 2.	0 >
			track search		lerault order	Chromos	ome Colo	r Key:	conligur	e reverse	resize	reiresn				
				1 2 3 4	5678	9 10 11 <mark>1</mark> 2	13 14 15	16 <mark>17</mark> 18	9 <mark>20</mark> 21 22	XYM	Un					
			collapse all	Use dro Tracks with	p-down cont lots of items	rols below a s will automa	nd press re tically be d	efresh to al lisplaved ir	ter tracks d more com	isplayed. pact mode	expa	nd all				
			-			Mapping an	d Sequen	cing			r	fresh				
			Base Besitie	an Accombly		Con		CC Porce	nt II		Restr					
			dense +	hide \$		dense \$		hide \$		hide \$	Enzyme	<u>s</u>				
			Short Match								hide	•				
			hide \$	1												
			-		G	enes and G	ene Predi	ctions			re	fresh				
			Ensembl	Genscan G	enes	Other RefS	ea	RefSeq G	enes							
			Ensembl Genes	Genscan G	<u>enes</u>	Other RefS	eq	RefSeq Ge	enes							
			Ensembl Genes hide \$	Genscan G	enes	Other RefS	eq and EST	RefSeq G pack ‡	enes			fresh				

Acquire the MC1R nucleotides sequence from UCSC

ñ	Genomes	Genome Browser	Tools	Mirrors	Downloads	My Data	Help	About Us		
RefSeq	Gene									
RefSeq: Descript Entrez G PubMed PubMed	eq Gene <u>NM_0010093</u> tion: Felis cat tion: 493917 on Gene: <u>M</u> on Product:	MC1R 324.1 Status: Prov us melanocortin 1 r C1R melanocyte-stimula	visional eceptor (a ating horm	ilpha melano none recepto	ocyte stimulating or	g hormone re	eceptor) (N	IC1R), mRNA.		
mRNA/	Genomic A	lignments								
BROWSER	SIZE IDENTI	TY CHROMOSOME ST	RAND S	TART EN	ND	QUERY	START E	ID TOTAL		

NM 001009324 1 954 954

Genomic Sequence Near Gene

browser 954 99.9%

Get Genomic Sequence Near Gene

E2

Note: if you would prefer to get DNA for more than one feature of this track at a time, try the Table Browser using the output format sequence.

Sequence Retrieval Region Options:

Promoter/Upstream by 1000 bases
5' UTR Exons
CDS Exons
3' UTR Exons
3' UTR Exons
Introns
Downstream by 1000 bases
One FASTA record per gene.
One FASTA record per region (exon, intron, etc.) with o extra bases upstream (5') and o extra downstream (3')
Split UTR and CDS parts of an exon into separate FASTA records
Note: if a feature is close to the beginning or end of a chromosome and upstream/downstream bases are added, they may be truncated in order to avoid extending past the edge of the chromosome.

+ 63720844 63721797

Sequence Formatting Options:

 Exons in upper case, everything else in lower case
OCDS in upper case, UTR in lower case.
OAll upper case.
OAll lower case.
Mask repeats: • to lower case • to N
submit

MC1R nucleotide sequences alignment (ClustalW2)

HUMAN HORSE MOUSE PIG FELCA CHICK	M / .] . ; .] . ;	AV PL ST P. S. SM	Q	G S . P E P . P . P A P	Q • • • • • • • • • • •	R F K S - I	2 L - - - - - - - - - - - - - - - - - - -	L - - R	GS A EP	5 L - - - - W	N	S 1 A A S	Р Ц – 5 Е	T P P P G	A 1 . 1 . 1 . A . A N Q	[P [. [S [.] .] .] .	Q Y H R N	L (GL TA	A T G	 A	 N Q	A T T T	N - - -	Q (1	Г G . Е 	A P P P P	R (P · W · Q · W ·	CL 	Е • • • G	V - - L L	SI D.	S P P P P	D - - - N	G E -	L F 	L	S • • G T	L (GL	2 V • • • •	S • • •	L . V .	/ E	N · ·	A V V V L	[60] [60] [60] [60] [60]
HUMAN HORSE MOUSE PIG FELCA CHICK	L V 	V V 	A T I ·	TI A. A. A. A. A.	A • T • • L	K N 	V R	N • • •	L H 	IS	P • • •	M <u>)</u> T .	C Y Y Y Y Y Y	F • •	I (V . 	C C	L • • •	A] 	L <mark>S</mark> V . V . V . V .	D • • •	L 1 M .	L V M . 	S • • •	G M V V V V	S 1 	N V I . S . L	L • • • A	E 1	ТА М. Т. Т.	V I F	I L L M M	L L • • • • • •	L • • • M	E • • •	A (- · · - · · - · H .	GA V I · V	L • • •	V A - A A -	A 1 T (G . I .	R A Q . V Q . 	A S - - S	V	L (V V V - 1	Q Q R R H	L - - M	D [. [. [. [. [. [[120] [120] [120] [120] [120] [120]
HUMAN HORSE MOUSE PIG FELCA CHICK	N Y . 1 . 1 	VI M	D • • • • •	V I . L . L . L . L . L M L	T , I , I , V , I	C 2 . (. (. (. (. (. (5 S 5 . 5 . 5 A	M - - V	LS V. V. V. V.	5 S	L - - -	C H - · · - · S ·	Γ - - - - - - -	G	A S . I . V .	[A	V	D 	R Y	I - - V -	S - - - T	I F • • • • • •	У Ч	A	L I 	RY	H	S :	IV. M. 	T M - -	L • • •	P R Q -	A V	R W G W V	R /	AV. . I . I . I TM	A V V S	A G S	I	W V - M - A - - I	/ A V I V A G 	S	V V . 1 . 1 . 1 . 1 T .	/ F _ S _ S _ S _ S _ S	S	T [. . . .	[180] [180] [180] [180] [180] [180]
HUMAN HORSE MOUSE PIG FELCA CHICK	L I V I	FI.	A - T - T	Y Y 	D N K H R	H V - 1 - 1 - 1 - 1 N N	A · · ·	V - - I	L L 	, C	L • • •	V V . 1 . 1 . 5 . 5 I C		F • •	L A V . V . V . V .	A M	L • • •	V A - 	L M 	A - - - L	V I	L Y 	V	H	M 1 	LA. FT.	R • • • L	A (CQ.	H • • •	A G V	QG R. RH RS	I • • •	A - - - S	R I Q . S (L H Q Q	K • • •	R - - T -	Q] . R . . .	R F H . S H . P T	• V I 5 I T • T	H R Y	Q (R (3 F 	G C S	L 	[240] [240] [240] [240] [240] [240]
HUMAN HORSE MOUSE PIG FELCA CHICK	K (G A 	V A A A A	T L 	2 T • • • •	I I 	, L - - - - -	G	IF V. V. V.	F - - - - - -	L • • • I	C W 	/ G - - A - - -	Р	F F 	⁷ L - - - F	H • • •		T L S . L . S . S . I .	I L V M	V 1 I . 	L C T -	P • • • •	E Q Q R T	H H N -	PT	C	G (T -	C I . V . V . V . F	F • •	K - - S	NF .V Y.	N K	L • • •	F 1	LA T L T	L • • •	I - - V -	I (L . V] 	CN . S LS 	A 5.5 5 5 5 5 5 5 5 5	I T V	II V V V V V) P	L • • F	I 	[300] [300] [300] [300] [300] [300]
HUMAN HORSE MOUSE PIG FELCA CHICK	Y /	AF	H R R R R R	S () E • • • •	L F 	R K M K K	Т • • •	L K . Q . Q . Q . R	E 2 - 2 - 2 - 2 - 2 - 2 -	V	L 1 . 1 . 1 . 4 . 1 V 1	∑ C , . , . , . , .	S • • •	W - - -																																[320] [320] [320] [320] [320] [320]

Prediction of trans-membrane helices in proteins (TMHMM)

Domains within *Felis catus* **protein MSHR_FELCA** (**Q865E9**)

Confidently predicted domains, repeats, motifs and features:

Name	Start 🔺	End	E-value	
transmembrane region	44	63	N/A	*
transmembrane region	76	98	N/A	
low complexity	99	116	N/A	
transmembrane region	118	140	N/A	
transmembrane region	161	183	N/A	
transmembrane region	187	209	N/A	
transmembrane region	243	265	N/A	
transmembrane region	280	300	N/A	-

Motifs within Felidae protein MSHR (Q865E9, Q865E5, Q865E8)

Combined Block Diagrams 🖓

Non-overlapping sites with a p-value better than 0.0001.

The height of the motif "block" is proportional to -log(p-value), truncated at the height for a motif with a p-value of 1e-10. Click on any row to highlight sequence in all motifs. The motif blocks have tool tips with more information.

Tor

Swiss model structure prediction

Comparison with Non-redundant Set of PDB Structures

Z-scorel>2

500

600

model

400

1<|Z-score|<2 Z-score <1

Protein interaction:

(Homo sapiens)			

Predicted Functional Partners:

MC1R

POMC	proopiomelanocortin; ACTH stimulates the adrenal glands to release cortisol (267 aa)	•	•	0.998
MC4R	melanocortin 4 receptor; Receptor specific to the heptapeptide core common to adrenocorticotrop [] (332 aa)	•	•	0.983
MC5R	melanocortin 5 receptor; Receptor for MSH (alpha, beta and gamma) and ACTH. The activity of thi [] (325 aa)	•	•	0.963
MC3R	melanocortin 3 receptor; Receptor for MSH (alpha, beta and gamma) and ACTH. This receptor is me [] (323 aa)	•	•	0.958
MC2R	melanocortin 2 receptor (adrenocorticotropic hormone); Receptor for ACTH. This receptor is medi [] (297 aa)		•	0.948
DRD1	dopamine receptor D1; This is one of the five types (D1 to D5) of receptors for dopamine. The a [] (446 aa)		•	0.915
ADCY2	adenylate cyclase 2 (brain); This is a membrane-bound, calmodulin-insensitive adenylyl cyclase (1091 aa)			0.914
GCG	glucagon; Glicentin may modulate gastric acid secretion and the gastro-pyloro-duodenal activity [] (180 aa)		•	0.913
🖲 PTH	parathyroid hormone; PTH elevates calcium level by dissolving the salts in bone and preventing [] (115 aa)		•	0.913
🖲 FSHR	follicle stimulating hormone receptor; Receptor for follicle-stimulating hormone. The activity [] (695 aa)		•	0.912

ARKIVE www.arkive.org

Summary

- The molecular genetic basis of adaptive change in phenotype is a major out-standing issue in evolutionary biology;
- Evolutionary change in coat and plumage color is a promising system for making progress in this field;
- > MC1R is an critical important candidate gene in coloration of mammals;
- MC1R is a kind of G-protein coupled receptor activated by α-MSH;
 Bioinformatics analyses are useful for deeply acquiring the sequence characteristics, phylogenetic relationships, structures, and protein interactions.

© Jean-Paul Ferrero / www.ardea.com

ARKIVE Acknowledgements

Teachers: Prof. Jinchu Luo Dr. Shujin Luo Dr. Wensheng Wei Dr. Zhengfan Jiang Dr. Qing Li Classmates: Shengjie Guo Xiaohan Ning Xiaotong Yang Xiaoxue Gao

Thanks to all the lab members in our labs. Thanks to all the classmates in this ABC class. © Jeff Foott / Discovery Communications, Inc.

