Applied Bioinformatics Course

A brief introduction to ExPASy

ExPASy网站应用实例

Group 05 25/01/2015

➤EXPASY是由瑞士生物信息研究所(SIB)维护的蛋白组学 分析平台,侧重于蛋白序列,结构及2-D电泳数据的分析。
> 整合了很多蛋白质数据资源和分析工具

▶由实验生物学家参与数据库的构建,数据注释质量高

Contents:

➤Background information of PTEN tumor suppressor.

➢Protein sequences and identification

Protein structure prediction

➢Protein function

Acknowledgements

Function of PTEN

>PTEN protein is found in almost all tissues in the body.

➢PTEN is an antagonist of PI3K signaling.

>PTEN is regulated by PTMs that affect its localization, stability, and activity.

PTEN-Long variant was predicted to contain an additional 173 amino acids at the amino terminus of the canonical PTEN protein

Hopkins BD et al. *Trends Biochem Sci.* 2014 Apr;39(4):183-90. Seton-Rogers S. *Nat Rev Cancer.* 2013 Aug;13(8):520.

Structure of PTEN tumor suppressor

Song MS, et al. *Nat Rev Mol Cell Biol.* 2012 Apr 4;13(5):283-96. Lee JO, et al. *Cell.* 1999 Oct 29;99(3):323-34.

Protein sequences and identification

▶pl, Mw 等电点,分子量

≻AA 氨基酸组成

➢Hydrophobicity /hydrophilicity 亲疏水性

➤Enzymatic cleavage site 酶切位点

▶ Extinction Coefficient 消光系数

Protein sequences and identification

Tools	Functions
AACompldent	Protein identification by aa composition
Compute pI/MW	Theoretical pl and Mw computation
ProtParam	Protein physical and chemical parameters
ProtScale	Protein profile computation and representation
HAMAP	UniProtKB family classification and annotation
LALIGN	Pairwise alignment
PeptideMass	Peptides from protein cleavage
Tagldent	Protein identification with PI, Mw

Prediction of PTEN' molecular weight and pl by Cmpute pl/Mw

Compute pl/Mw

Theoretical pl/Mw (average) for the user-entered sequence:

MTAIIKEIVS RNKRRYQEDG FDLDLTYIYP NIIAMGFPAE RLEGVYRNNI DDVVRFLDSK HKNHYKIYNL CAERHYDTAK FNCRVAQYPF EDHNPPQLEL IKPFCEDLDQ WLSEDDNHVA 140 150 AIHCKAGKGR TGVMICAYLL HRGKFLKAQE ALDFYGEVRT RDKKGVTIPS QRRYVYYYSY LLKNHLDYRP VALLFHKMMF ETIPMFSGGT CNPQFVVCQL KVKIYSSNSG PTRREDKFMY FEFPOPLPVC GDIKVEFFHK ONKMLKKDKM FHFWVNTFFI PGPEETSEKV ENGSLCDQEI 320 330 DSICSIERAD NDKEYLVLTL TKNDLDKANK DKANRYFSPN FKVKLYFTKT VEEPSNPEAS SSTSVTPDVS DNEPDHYRYS DTTDSDPENE PFDEDQHTQI TKV

Theoretical pl/Mw: 5.94 / 47166.29

ProtParam tool: Another tool for AA Composition, pl and Mw

Number of amino acids: 403 Total number of negatively charged residues (Asp + Glu): 62 Total number of positively charged residues (Arg + Lys): 54 Molecular weight: 47166.2 Atomic composition: Theoretical pI: 5.94 Carbon С 2113 3215 Hydrogen Η Amino acid composition: Nitrogen N 561 Ala (A) 17 4.2% Oxygen 0 630 Arg (R) 20 5.0% S 19 Sulfur Asn (N) 23 5.7% Asp (D) 33 8.2% Formula: C2113H3215N561O630S19 Cvs (C) 10 2.5% Total number of atoms: 6538 3.2% Gln (Q) 13 Glu (E) 29 7.2% Extinction coefficients: 3.7% Gly (G) 15 3.2% His (H) 13 Extinction coefficients are in units of M^{-1} cm⁻¹, at 280 nm measured in water. Ile (I) 20 5.0% Leu (L) 27 6.7% Ext. coefficient 45895 Lys (K) 34 8.4% Abs 0.1% (=1 g/1) 0.973, assuming all pairs of Cys residues form cystines Met (M) - 9 2.2% 6.2% Phe (F) 25 Pro (P) 23 5.7% Ser (S) Ext. coefficient 45270 22 5.5% Abs 0.1% (=1 g/1) 0.960, assuming all Cys residues are reduced Thr (T) 21 5.2% Trp (W) 2 0.5% Estimated half-life: Tyr (Y) 23 5.7% Val (V) 24 6.0% The N-terminal of the sequence considered is M (Met). Pyl (0) 0 0.0% Sec (U) 0 0.0% The estimated half-life is: 30 hours (mammalian reticulocytes, in vitro). >20 hours (yeast, in vivo). (B) 0 0.0% >10 hours (Escherichia coli, in vivo). (Z) 0 0.0% (X)0 0.0%

ProtScale: a numerical value assigned to each type of amino acid.

ProtScale [Reference / Documentation] allows you to compute and represent the profile produced by any amino acid scale on a selected protein.

An **amino acid scale** is defined by a numerical value assigned to each type of amino acid. The most frequently used scales are the hydrophobicity or hydrophilicity scales and the secondary structure conformational parameters scales, but many other scales exist which are based on different chemical and physical properties of the amino acids. This program provides 57 predefined scales entered from the literature.

Enter a UniProtKB/Swiss-Prot or UniProtKB/TrEMBL accession number (AC) (e.g. P05130) or a sequence identifier (ID) (e.g. KPC1_DROME):

Or you can paste your own sequence in the box below:

Please choose an amino acid scale from the following list. To display information about a scale (author, reference, amino acid scale values) you can click on its name.

O Molecular weight

O Polarity / Grantham

O Recognition factors

Hphob. OMH / Sweet et al.
 Hphob. / Kyte & Doolittle

O Hphob. / Abraham & Leo

O Hphob. / Bull & Breese

○ Hphob. / Miyazawa et al.

○ Hphob. / Roseman

○ Bulkiness

O Hphob. / Guy

- 🔘 Polarity / Zimmerman
- O Refractivity
 - Hphob. / Eisenberg et al.

O Number of codon(s)

- 🔘 Hphob. / Hopp & Woods
- 🔘 Hphob. / Manavalan et al.
 - 🔿 Hphob. / Black
 - O Hphob. / Fauchere et al.
 - 🔿 Hphob. / Janin
 - Hphob. / Rao & Argos
- 🔘 Hphob. / Tanford
- Hphob. / Wolfenden et al. Hphob. / Welling & al

ProtScale: a numerical value assigned to each type of amino acid.

Using the scale Polarity / Zimmerman, the individual values for the 20 amino acids are:

 Ala:
 0.000
 Arg: 52.000
 Asn: 3.380
 Asp: 49.700
 Cys: 1.480
 Gln: 3.530

 Glu:
 49.900
 Gly:
 0.000
 His: 51.600
 Ile:
 0.130
 Leu:
 0.130
 Lys: 49.500

 Met:
 1.430
 Phe:
 0.350
 Pro:
 1.580
 Ser:
 1.670
 Thr:
 1.660
 Trp:
 2.100

 Tyr:
 1.610
 Val:
 0.130
 : 26.540
 : 26.715
 : 13.594

Weights for window positions 1,...,9, using exponential weight variation model:

1	2	3	4	5	6	7	8	9
1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
edge				center				edge

PeptideMass: cleaves a protein sequence from a user-entered protein sequence with a chosen enzyme, and computes the masses of the generated peptides.

PeptideMass

The entered sequence is:

MTAIIKEIVS RNKRRYQEDG FDLDLTYIYP NIIAMGFPAE RLEGVYRNNI DDVVRFLDSK HKNHYKIYNL CAERHYDTAK FNCRVAQYPF EDHNPPQLEL IKPFCEDLDQ WLSEDDNHVA 150 160 AIHCKAGKGR TGVMICAYLL HRGKFLKAQE ALDFYGEVRT RDKKGVTIPS QRRYVYYYSY LLKNHLDYRP VALLFHKMMF ETIPMFSGGT CNPQFVVCQL KVKIYSSNSG PTRREDKFMY FEFPQPLPVC GDIKVEFFHK QNKMLKKDKM FHFWVNTFFI PGPEETSEKV ENGSLCDQEI DSICSIERAD NDKEYLVLTL TKNDLDKANK DKANRYFSPN FKVKLYFTKT VEEPSNPEAS SSTSVIPDVS DNEPDHYRYS DIIDSDPENE PFDEDQHIQI IKV

The selected enzyme is: Trypsin

he peptide masses from your sequence are:

position #MC modifications peptide sequence mass VAQYPFEDHNPPQLELIKPF CEDLDQWLSEDDNHVAAIHC K 4804.2446 85-125 0 3146.3668 350-378 TVEEPSNPEASSSTSVTPDV SDNEPDHYR 0 YQEDGEDI DI TYIYPNIAM GEPAER 3051 4444 16-41 0 2812,1704,379-402 **YSDTTDSDPENEPFDEDQHT QITK** 0 2708 2413 198-221 MMFETIPMFSGGTCNPQFVV CQLK 0 2443 1427 270-289 MEHEWVNTEFIPGPEETSEK 0 2109 9427 290-308 VENGSLCDQEIDSICSIER 0 2030 9754 238-254 FMYFEFPQPLPVCGDIK 0 1722.9438 184-197 NHLDYRPVALLFHK Ω 1397.6695 148-159 AQEALDFYGEVR 0 TGVMICAYLLHR 1376 7177 131-142 0 1374,6980 174-183 **YVYYYSYLLK** 0 1081.5272 224-233 IYSSNSGPTR 0 1079 6347 314-322 **EYLVLTLTK** 0 981 4822 67-74 IYNLCAER 0

[Theoretical pl: 5.94 / Mw (average mass): 47166.29 / Mw (monoisotopic mass): 47136.15]

PeptideCutter

PeptideCutter

PeptideCutter

PeptideCutter [references / documentation] predicts potential cleavage sites cleaved by proteases or chemicals in a given protein sequence. PeptideCutter returns the query sequence with the possible cleavage sites mapped on it and /or a table of cleavage site positions.

Enter a UniProtKB (Swiss-Prot or TrEMBL) protein identifier, ID (e.g. ALBU_HUMAN), or accession number, AC (e.g. P04406), or an amino acid sequence (e.g. 'SERVELAT'):

MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDV VRFLDSKHKNHYKIYNL CAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIH CKACKGRTGVMICAYLL HRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVAL LFHKMMFETIPMFSGGT CNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNK MLKKDKMFHFWVNTFFI PGFEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANKDKA NRYFSPNFKVKLYFTKT VEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQITKV

Perform the cleavage of the protein. Reset the fields.

Please, select

Il available enzymes and chemicals

only the following selection of enzymes and chemicals

Arg-C proteinaseBNPS-Skatole

Asp-N endopeptidase

Caspase1

Asp-N endopeptidase + N-terminal GluCaspase2

Home | Contact

Result of Peptidecutter on PTEN

Name of enzyme	No. of cleavages	Positions of cleavage sites
Arg-C proteinase	20	11 14 15 41 47 55 74 84 130 142 159 161 172 173 189 233 234 308 335 378
Asp-N endopeptidase	33	18 21 23 50 51 57 76 91 106 108 114 115 152 161 186 235 251 267 296 300 309 311 323 325 330 367 370 374 380 383 385 392 394
Asp-N endopeptidase + N-terminal Glu	62	6 17 18 21 23 39 42 50 51 57 72 76 90 91 98 105 106 108 113 114 115 149 152 156 161 186 200 234 235 241 251 255 267 283 284 287 290 296 298 300 306 309 311 313 323 325 330 351 352 357 367 370 372 374 380 383 385 387 389 392 393 394
BNPS-Skatole	2	111 274
CNBr	9	1 35 134 198 199 205 239 264 270
Chymotrypsin- high specificity (C-term to [FYW], not before P)	46	16 21 27 46 56 65 68 76 81 90 104 111 138 145 154 155 174 176 177 178 180 188 195 200 206 215 225 238 240 241 257 258 271 273 274 278 279 315 336 337 341 346 347 377 379 392
Chymotrypsin- low specificity (C-term to [FYWML], not before P)	93	1 16 21 23 25 27 35 42 46 56 57 61 64 65 68 70 75 76 81 90 93 98 100 104 108 111 112 118 123 134 138 139 140 141 145 146 152 154 155 174 176 177 178 180 181 182 185 186 188 193 194 195 196 198 199 200 205 206 215 220 225 238 240 241 257 258 259 264 265 270 271 272 273 274 278 279 295 315 316 318 320 325 336 337 341 345 346 347 376 377 379 392 397
Clostripain	20	11 14 15 41 47 55 74 84 130 142 159 161 172 173 189 233 234 308 335 378
Formic acid	33	19 22 24 51 52 58 77 92 107 109 115 116 153 162 187 236 252 268 297 301 310 312 324 326 331 368 371 375 381 384 386 393 395
Glutamyl endopeptidase	29	7 18 40 43 73 91 99 106 114 150 157 201 235 242 256 284 285 288 291 299 307 314 352 353 358 373 388 390 394

These chosen enzymes do not cut:

	1 111. J_1 116_ 1116L M
Caspase1	HCOOH
Caspaso10	AspN_AspGluN_Glu_ProtK_Staph
Caspase 10	AspGluN
Caspase2	Ch_hi_Ch_lo_ProtK
Caspaso3	ArgC_Clost_Tryps
Caspases	ArgC_Clost_Tryps
Caspase4	LysC_Tryps
Caspase5	
00390300	ArgC_Clost_Tryp <mark>s</mark>
Caspase6	ProtK
Caspase7	ProtK_Therm
	Glu_ProtK_Staph
Caspase8	AspGluN_LysC_Tryps
Caspase9	LysN_ProtK
ouopuoco	ProtK_Therm
Enterokinase	ProtK_Therm
Factor Xa	ProtK_Therm
1 actor Ma	CNBr_Ch_lo
GranzymeB	
Thrombin	
	MTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSK
Tobacco etch virus prote	1+++++

Protein structure prediction

Secondary structure

≻3D structure

➤Domain

Protein structure prediction

Tools	Functions
CFSSP	Protein secondary structure prediction
COILS	Prediction of Coiled Coil Regions in Proteins
DisEMBL	Prediction of disordered protein regions
Predict Protein	Prediction of physico-chemical protein properties
PORTER	Protein Secondary Structure Prediction
PROSITE	Protein domains and families
Phyre2	3D structure prediction with HMM
SWISS MODEL	Ptructure homology-modeling
SWISS pdb viwer	Analyse protein 3D structures

The secondary structure of PTEN

Secondary Structure and Solvent Accessibility Prediction for PTEN_HUMAN

Protein Disorder and Flexibility Prediction for PTEN_HUMAN

Exp	rt▼				
Visual	Help				
What a colored	n I seeing Here? This viewer lays out boxes to learn more about the annotation	predicted features that corr ons	espond to regions within	the queried sequence. Mo	ouse over the different
Zoom -	tart:1, End:403				Export to image
1	22 44 66 88 110 1	32 154 176 198	220 242 264	286 308 330	352 374 396 403
		10			
I			I		

Disulphide Bridges Prediction for PTEN_HUMAN

Export-	,
Visual	Help
What am I colored box	seeing Here? This viewer lays out predicted features that correspond to regions within the queried sequence. Mouse over the different xes to learn more about the annotations
Zoom - Star	rt:1, End:403
22 1	44 66 88 110 132 154 176 198 220 242 264 286 308 330 352 374 396 403

No disulphide was predicted by Disulphide Bridge Prediction

The Cys124 residue in the active site of PTEN forms a disulfide bond with Cys71

Lee SR et al. *J Biol Chem.* 2002 Jun 7;277(23):20336-42. Song MS, et al. *Nat Rev Mol Cell Biol.* 2012 Apr 4;13(5):283-96.

Protein domains prediction of PTEN

ScanProsite Results Viewer

Ouput format: Graphical view - this view shows ScanProsite results together with ProRule-based predicted intra-domain features [help].

Hits for all PROSITE (release 20.110) motifs on sequence USERSEQ1 :

found: 3 hits in 1 sequence

USERSEQ1 (403 aa)

MTATIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYK IYNLCAERHYDTAKFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTG VMICAYLLHRGKFLKAQEALDFYGEVRTRDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKM MFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMYFEFPQPLPVCGDIKVEFFHKQNKM LKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTLTKNDLDKANK DKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQ HTQITKV

Protein domains prediction of PTEN

190 - 350: score = 24.203

PVALLFHKMMFETIPMFSGGT-CNPQFVVCQLKVKIYSSNSGPTRR---EDKFMYFEFPQ PLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPeetsekvengslcdqeidsics ieradndkeylVLTLTKNDLDKANkDKANRyFSPNFKVKLYFTKT

3D structure prediction of PTEN

PTEN Created: today at 13:47

Summary	Templates 50	Models (3)	×			
Model	Results o			Order by:	GMQE	•
		Oligo-State	Li	gands	GMQE [®]	QMEAN4
		MONOMER	1	x TLA ^{∟"} ∧	0.73 -	6.09 1 🖓 🔥
Mod	Jel 01 🗈 🔻	1 x L(+)-TARTARIC AC Ligand 1 in contact with QMEAN4 Cβ All Atom Torsion Template Seq Identity 1d5r.1.A 99.69% Model-Template Align	CID th: Chain A : D92 -6.09 -4.20 -3.14 -4.09 -3.61	H93, C124, K125, A120	5, G129, R130, Q171	Set of FCB Structures
	a 🖻	Oligo-State		Ligands	GMQE	QMEAN4
		MONOMER		1 x TLAピ ❤	0.68	-6.09 I C
6	Ð	Template Seq Identity	y Coverage	Description		
		1d5r.1.A 99.38%		PHOSPHOINOSITIDE	PHOSPHATASE PT	EN ·
Mo	del 02 皆 🔻	Model-Template Alig	inment			
		Oligo-State		Ligands	GMQE	QMEAN4
	MONOMER		None	0.55	-10.99 🐶	
		Template Seq Identit	y Coverage	Description		
	Y	3v0g.2.A 35.53%		Voltage-sensor con	taining phosphatase	
Мо	tel 03 皆 🔻	Model-Template Alig	Inment			

Models

The following model was built (see Materials and Methods "Model Building"):

Model #0	1 File	E	Built with		Oligo-Sta	te	I	Ligands		GMQE	QMEAN4
	PDB	ProMod Version 3.70.		3.70.	MONOME	R 1 x	x TLA: L(+)-TARTARIC ACID;			0.73	-6.09
QMEAN4 Cβ All Atom Solvation Torsion	-6.09 -4.20 -3.14 -4.09 -3.61				Local Quality	Estimate: Chain A		Correction of the second secon	100 million with Non-redund	If Set of PDB Structur (E-score(+2) If Secore(+2) If Secore(+2)	es F
Template	Seq Identity	Oligo- state	Found by	Method	Resolution	Seq Similarity	Range	Coverage		Descriptio	'n
1d5r.1.A	99.69	monomer	BLAST	X-ray	2.10Å	0.62	14 - 351	0.80	PHO PHO	SPHOINO: SPHATASE	SITIDE E PTEN
Liga	and		Add	ed to Mo	odel			De	escription		
TL	A			1				L(+)-TA	ARTARIC A	CID	
TargetMTAIIKEIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAK1d5r.1.AIVSRNKRRYQEDGFDLDLTYIYPNIIAMGFPAERLEGVYRNNIDDVVRFLDSKHKNHYKIYNLCAERHYDTAKTargetFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRT1d5r.1.AFNCRVAQYPFEDHNPPQLELIKPFCEDLDQWLSEDDNHVAAIHCKAGKGRTGVMICAYLLHRGKFLKAQEALDFYGEVRT											
Target RDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMY 1d5r.1.A RDKKGVTIPSQRRYVYYYSYLLKNHLDYRPVALLFHKMMFETIPMFSGGTCNPQFVVCQLKVKIYSSNSGPTRREDKFMY											

 Target
 FEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEETSEKVENGSLCDQEIDSICSIERADNDKEYLVLTL

 1d5r.1.A
 FEFPQPLPVCGDIKVEFFHKQNKMLKKDKMFHFWVNTFFIPGPEE------VDNDKEYLVLTL

 Target
 TKNDLDKANKDKANRYFSPNFKVKLYFTKTVEEPSNPEASSSTSVTPDVSDNEPDHYRYSDTTDSDPENEPFDEDQHTQI

 1d5r. 1. A
 TKNDLDKANKDKANRYFSPNFKVKLYFTKTVEE-----

Target TKV

1d5r.1.A ---

Protein function

▶Secretory protein 分泌蛋白

▶Transmembrane Protein 膜蛋白

▶Subcellular localization 细胞定位

▶Post-transcriptional modification 翻译后修饰

Secretory protein: SignalP

- SignalP indicated that PTEN-Long contained a secretion signal sequence with a predicted cleavage site at amino acid 22.
- Experiment evidence shows that PTEN-Long is secreted from cells and can enter other cells.

Hopkins BD et al. *Science*. 2013 Jul 26;341(6144):399-402. Liang H et al. *Cell Metab.* 2014 May 6;19(5):836-48.

Prediction of Transmembrane Protein

Tools	Functions
DAS-TMfilter	Prediction of transmembrane regions
НММТОР	Prediction of transmembranes helices and topology
HTMSRAP	Helical TransMembrane Prediction
Phobius	Predict transmembrane topology and signal peptides
ТМНММ	Prediction of transmembrane helices in proteins
TMPred	Membrane-spanning region prediction
TopPred	Topology prediction of membrane proteins

TMHMM as an example: prediction of PTEN

PTEN is not a transmembrane protein.

TMHMM as an example: prediction of membrane protein GLUT4

Glucose transporter type 4, also known as GLUT4, is the insulin-regulated glucose transporter found primarily in adipose tissues and striated muscle.

Predict protein:

VIEWS		Export-
Dashboard	->	
STRUCTURE ANNOTATION		Dashboard Overview for PTEN HUMAN
Secondary Structure and Solvent Accessibility	>	Recommended Name: Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-
Transmembrane Helices	>	specificity protein phosphatase PTEN
Protein Disorder and Flexibility	5	Predicted Subcellular Localization: Cytoplasm
Disulphide Bridges	>	
FUNCTION ANNOTATION		What am I seeing Here? This viewer lays out predicted features that correspond to regions within the queried sequence. Mouse over the different colored haves to learn more about the apportations.
Effect of Point Mutations	>	colored boxes to learn more about the annotations
Gene Ontology Terms	>	Zoom Start 1 End 102
Subcellular Localization	>	Export to image
Binding Sites	>	

Subcellular Localization Prediction for PTEN and GLUT4

Prediction of Subcellular Localization

Tools	Functions
MITOPROT	Predict mitochondrial targeting sequences
NetNES	Prediction of leucine-rich nuclear export signals
PSORT	Protein subcellular location prediction
TargetP	Subcellular location prediction

Prediction of PTEN's Subcellular Localization

PSORT result:

----- Final Results -----

```
cytoplasm --- Certainty= 0.650(Affirmative) < succ>
mitochondrial matrix space --- Certainty= 0.100(Affirmative) < succ>
lysosome (lumen) --- Certainty= 0.100(Affirmative) < succ>
endoplasmic reticulum (membrane) --- Certainty= 0.000(Not Clear) < succ>
```

TargetP 1.1 Server - prediction results

Name	Len	mTP	SP	other	Loc	RC
Sequence	403	0.155	0.113	0.765	_	2
cutoff		0.000	0.000	0.000		

PTEN is mainly located in the cytoplasm

Prediction of Cytochrome c1's Subcellular Localization

TargetP 1.1 Server - prediction results

Name	Len	mTP	SP	other	Loc	RC
Sequence	548	0.831	0.053	0.095	M	2
cutoff		0.000	0.000	0.000		

Cytochrome C1 is targeted to the mitochondrial intermembrane space.

> It is forms the third proton pump in the mitochondrial electron transport chain.

MITOPROT: Predict mitochondrial targeting sequences

Sequence name: PTEN Input sequence length : 406 aa

VALUES OF COMPUTED PARAMETERS

Net charge of query sequence	:	-14	
Analysed region	:	6	
Number of basic residues in targeting sequence	:	1	
Number of acidic residues in targeting sequence	:	0	
Cleavage site		: not predic	table
Cleaved sequence	:		

PROBABILITY

of export to mitochondria: 0.3311

Sequence name: CYTOCHROME C1 Input sequence length : 325 aa

VALUES OF COMPUTED PARAMETERS

Net charge of query sequence	:	+8
Analysed region	:	85
Number of basic residues in targeting sequence	:	10
Number of acidic residues in targeting sequence	:	0
Cleavage site		: 36
Cleaved sequence	:	MAAAAASLRGVVLGPRGAGLPGARARGLLCSARPG

PROBABILITY

of export to mitochondria: 0.8446

Prediction of Post-transcriptional modification

Tools	Functions
MICSS-Palm	Prediction of palmitoylation sites in proteins
GPS	Prediction of kinase-specific phosphorylation site
NetAcet	predict N-terminal acetylation sites
NetCGlyc	C-mannosylation sites in mammalian proteins
NetCorona	Coronavirus 3C-like proteinase cleavage sites
NetGlycate	glycation of epsilon amino groups of lysines
NetNGlyc	N-glycosylation sites in human proteins
NetOGlyc	mammalian mucin type GalNAc O-glycosylation sites
NetPhos	predict phosphorylation in eukaryotes
NetPhosK	Prediction of kinase-specific phosphorylation site
NMT	Predict N-terminal N-myristoylation of proteins
Sulfinator	tyrosine sulfation site prediction
SulfoSite	Prediction of tyrosine sulfations sites
SUMOplot	Prediction of sumoylation sites in proteins
SUMOsp	Prediction of sumoylation sites
YinOYang	O-beta-GlcNAc attachment sites in eukaryotes

Prediction of phosphorylation of PTEN by NetPhos 2.0

Prediction of phosphorylation of PTEN by NetPhos 2.0

Serine predictions

Name	Pos	Context	Score	Pred
		v		
Sequence	10	KEIVSRNKR	0.263	
Sequence	59	RFLDSKHKN	0.109	
Sequence	113	DQWLSEDDN	0.720	*S*
Sequence	170	VTIPSQRRY	0.860	*S*
Sequence	179	VYYYSYLLK	0.002	
Sequence	207	IPMFSGGTC	0.010	
Sequence	226	VKIYSSNSG	0.239	
Sequence	227	KIYSSNSGP	0.143	
Sequence	229	YSSNSGPTR	0.564	*S*
Sequence	287	PEETSEKVE	0.821	*S*
Sequence	294	VENG SLCDQ	0.994	*S*
Sequence	302	QEIDSICSI	0.806	*S*
Sequence	305	DSICSIERA	0.981	*S*
Sequence	338	NRYF SPNFK	0.983	*S*
Sequence	355	VEEPSNPEA	0.963	*S*
Sequence	360	NPEASSSTS	0.822	*S*
Sequence	361	PEASSSTSV	0.068	
Sequence	362	EASSSTSVT	0.959	*S*
Sequence	364	SSSTSVTPD	0.981	*S*
Sequence	370	TPDVSDNEP	0.966	*S*
Sequence	380	HYRYSDTTD	0.423	
Sequence	385	DTTDSDPEN	0.989	*S*
		n		

SUMOplot: Prediction of Sumoylation sites in proteins

Pro	otein ID:	gi 42560209 sp P60484.1 PTEN_HUMAN								
De	efintion:	RecName: Full=Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual- specificity protein phosphatase PTEN; AltName: Full=Mutated in multiple advanced cancers 1; AltName: Full=Phosphatase and tensin homolog								
	Length:	: 403 aa								
1 1 51 1 101 2 201 1 201 1 251 (301 1 351 3 401 2	1 MTAIIKEIVS RNKRRYQEDG FDLDLTYIYP NIIAMGFPAE RLEGVYRNNI 51 DDVVRFLDSK HKNHYKIYNL CAERHYDTAK FNCRVAQYPF EDHNPPQLEL 101 IKPFCEDLDQ WLSEDDNHVA AIHCKAGKGR TGVMICAYLL HRGKFLKAQE 151 ALDFYGEVRT RDKKGVTIPS QRRYVYYSY LLKNHLDYRP VALLFHKMMF 201 ETIPMFSGGT CNPQFVVCQL KVKIYSSNSG PTRREDKFMY FEFPQPLPVC 251 GDIKVEFFHK QNKMLKKDKM FHFWVNTFFI PGPEETSEKV ENGSLCDQEI 301 DSICSIERAD NDKEYLVLTL TKNDLDKANK DKANRYFSPN FKVKLYFTKT 351 VEEPSNPEAS SSTSVTPDVS DNEPDHYRYS DTTDSDPENE PFDEDQHTQI 401 TKV TKV TKV TK TKV									
No.	Pos.	Group	Score	No.	Pos.	Group Sco				
1	K254	PVCGD IKVE FFHKQ	0.94	4	K289	PEETS EKVE NGSLC				
2	K266	KQNKM L <u>K</u> KD KMFHF	0.91	5	K163	EVRTR DKKG VTIPS	0.33			
3	K102	PQLEL IKPF CEDLD	0.59	6	K269	KMLKK DKMF HFWVN				

Experiment evidence suggested that lysine residue 266 and 289 as SUMO acceptors .

González-Santamaría J et al. Cell Death Dis. 2012 Sep 27;3:e393.

Summary

Swiss-Prot/ Uniprot

Protein sequences and identification

➢ Protein structure prediction

➢Protein function

➤Experiment

Acknowledgements

- Prof. Luo.
- Dr. Wang.
- Cai Tiantian, Liu Yiqiong, Jiang Qianru.