Bioinformatics analysis of Zebrafish gene *npdc1*

By G07: 张雨田 杨磊 郭前进 程振朝

Speaker: 程振朝

10th Jan., 2014 @ PKU

Outline

- > 1. Introduction to Zebrafish
- > 2. Introduction to Zebrafish gene *npdc1*
- > 3. Analysis of gene *npdc1*
- 4. Analysis of Protein Npdc1
- > 5. Blast and Phylogenetic tree
- ➤ 6. Protein structure prediction and function
- > 7. Conclusion
- > 8. Acknowledgement

1. Introduction to zebrafish

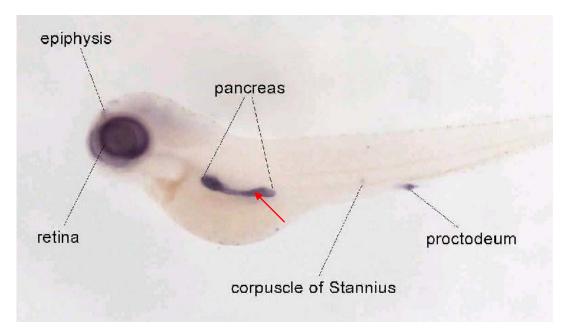
2. Introduction to Zebrafish gene *npdc1*

NPDC-1, a regulator of neural cell proliferation and differentiation, interacts with E2F-1, reduces its binding to DNA and modulates its transcriptional activity

--NPDC-1 is specifically expressed in neural cells when they stop to divide and begin to differentiate.

Research

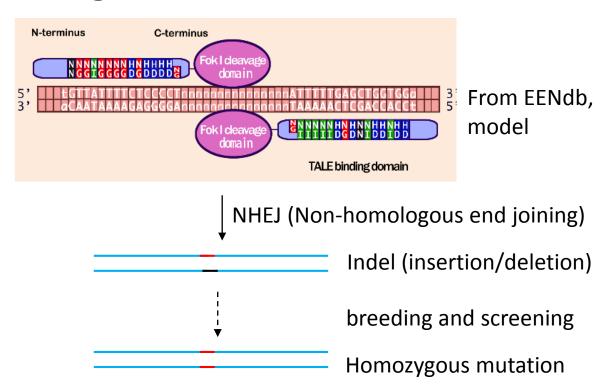
Open Access


A neuronal-specific differentiation protein that directly modulates retinoid receptor transcriptional activation

Kenneth W Henry II, Michael L Spencer, Maria Theodosiou, Dingyuan Lou

NPDC-1 is transported in vesicles from the Golgi apparatus to the cell membrane and is then likely internalized into endosomes.

Introduction to Zebrafish gene npdc1

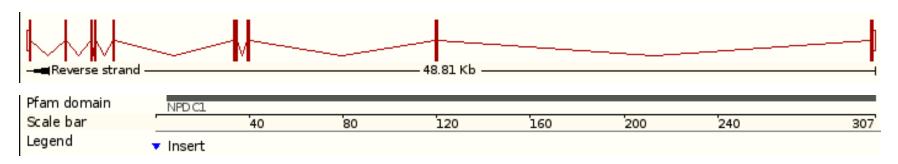

• Our research:

This in-situ hybridation figure (from ZFIN)showed that *npdc1* gene was largely expressed in pancreas on 5dfp, which inspired us to explore the role of npdc1 in zebrafish pancreas by gene targeting.

Gene targeting

 TALEN: DNA binding domain - TALE and DNA cleavage domain- Fokl endonuclease

Phenotype of zebrafish npdc1⁻/npdc1⁻


 Just finding that zebrafish egg cannot absorb water to expand its oolemma, compared with

WT.

npdc1⁻/npdc1⁻ mutants (F3)

3. Analysis of gene *npdc1*

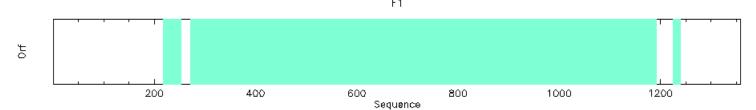
• Location: 21: 11,904,663-11,953,632 -.

npdc1⁻/⁻ zebrafish (exon2 -7bp)

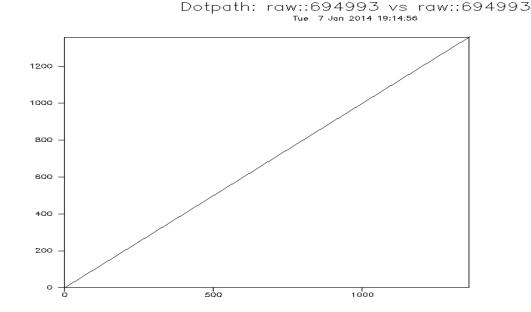
Paralogous of *npdc1*

An amazing NPDC1 gene in zebrafish

Zfin	Ensembl	NCBI	
npdc1	npdc1	npdc1	
	NPDC1	NPDC1-L	


DNA Sequence alignment (Ensembl)

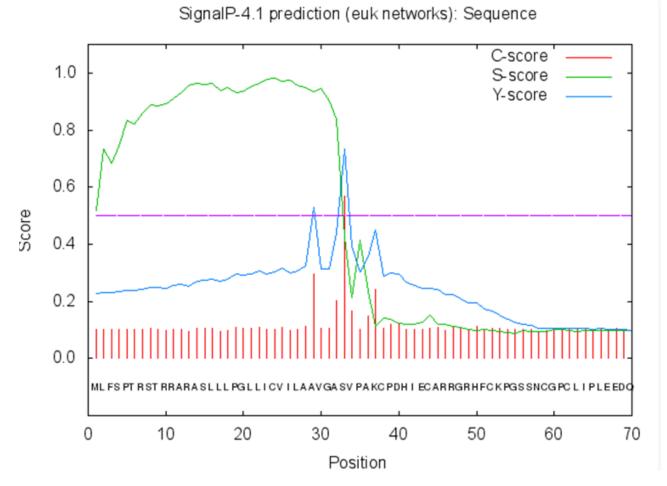
Protein sequence similarity is 44%, but N-terminal 40 Aas are high conserved. NPDC1 may be a pseudogene.


Range 1	: 1 to 277 Graphics		▼Ne	ext Match ▲ Pre\
Score	Expect Method	[dentities	Positives	Gaps
256 bits	(654) 5e-88 Compositional matrix adjust. :	141/282(50%)	186/282(65%)	23/282(8%)
Query 38	CPDHIECARRGRHFCKPGSSNCGPCLIPLEEDQMGHCVVRSVI CP ++CAR RHFC+PGS +CGPCL P E++ G CV+R			
Sbjet 1	CPRSLDCARERRHFCQPGSLHCGPCLDPFMENKRGKCVLRRR			
Query 98	EIDFLSSVITKQQLSESKHSDSAPQSPPQVQLKQKSLHKT EID LSS+I+K + SE KHS +P + P+ + S +K		TSP 147 S	
Sbjet 5	EIDILSSIISKHRESEMKHSAPSPAASKAPENKSGSSSHYKA	PPTAATSIQPPTRGL	ISS 116	
Query 1	8 TAPTHTTNSSNRHGPVISPNPSRD-SLLVLMISLCIIVGA T+PT T S+ PIPPSDS++++++VG+			
Sbjet 11				
Query 20	5 LAQKVDYPAFQEAANRNNTSSGDKTLAHSAQMYHYQH LAQKVDYPAF + S SGDK LA SAQMYH+Q (
Sbjet 17	7 LAQKVDYPAFGLIGPNSYDSGMVSKSGDKKLAQSAQMYHFQL			
Query 26	O ESGGHSDEETEEGDFTVYECPGLAPTGEMEVKNPLFDDSTLH +SG SDEE E+GDFTVYECPGLAPTGEMEVKNPLFDDST H		_	
Sbjet 23				

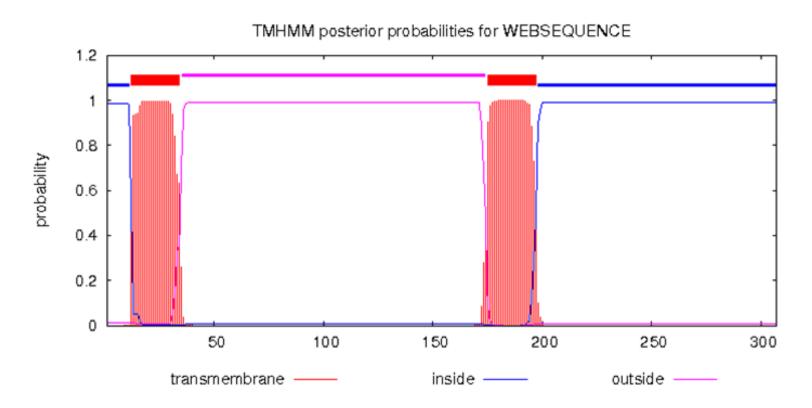
ORF and repeated sequence

PlotORF: The result was consistent with truth.

Dottpath: No repeated sequence was predicted.

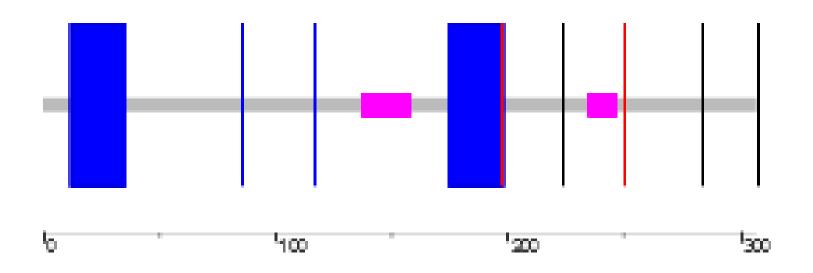

4. Analysis of Protein

General feature:


- > Average residue weight: 109.721 g/mol
- ➤ Isoelectric point: 7.5587
- ➤ Molecular weight: 33,684.30 g/mol
- ➤ Number of residues: 307 aa

Signal peptide prediction

1-32 AA region may be a signal peptide



Transmembrane perdiction

Red: Transmembrane region

SMART Prediction

- Blue Box: Transmembrane domain
- line: Intron
- Pink box: Low complexity region

Motif of npdc1 protein

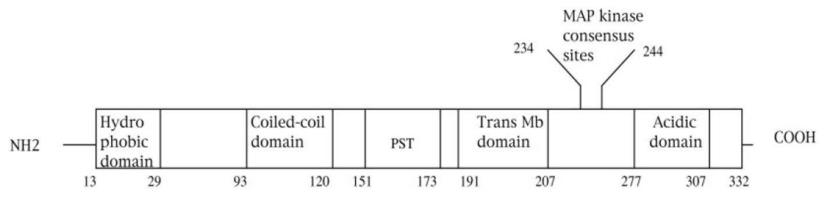
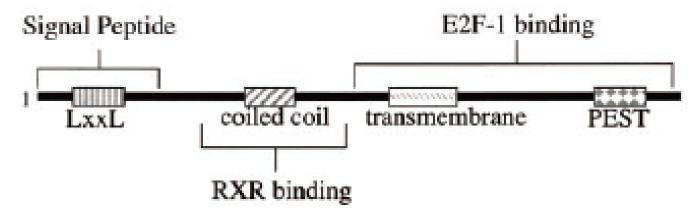
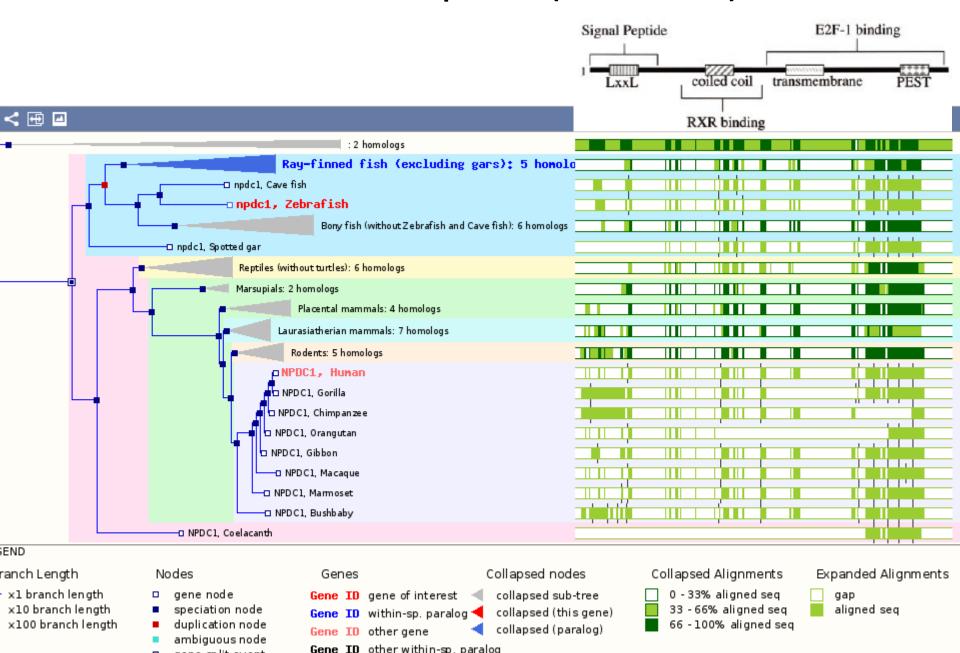




Fig. 1. Representation of the NPDC-1 protein structure.

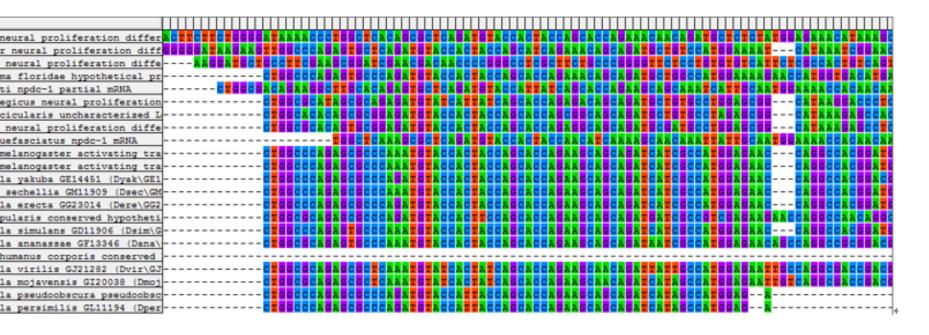
C. Evrard et al., 2005

Gene tree of npdc1 (Ensembl)

Protein Interaction

- Protein function in human:
- Ddr1: regulates cell migration, differentiation, survival and cell proliferation.
- **Nenf**: May play a role on neuronal differentiation and may have a transitude effect on neural cell proliferation in neural precursor cells.
- **Ddx41**: Probable ATP-dependent RNA helicase. Is required during post-transcriptional gene expression. May be involved in pre-mRNA splicing.
- Arhgap23: GTPase activator for the Rho-type GT s by converting them to an inactive GDP-bound state
- **Prmt2**: Represses E2F1 transcriptional activity (in a RB1-depended manner). May be involved in growth regulation

Ddx41

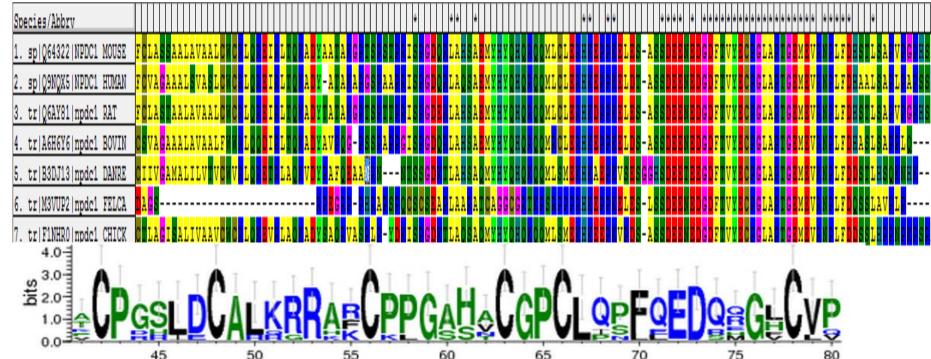

B3gaint1

Arhgap23

Tmem132a

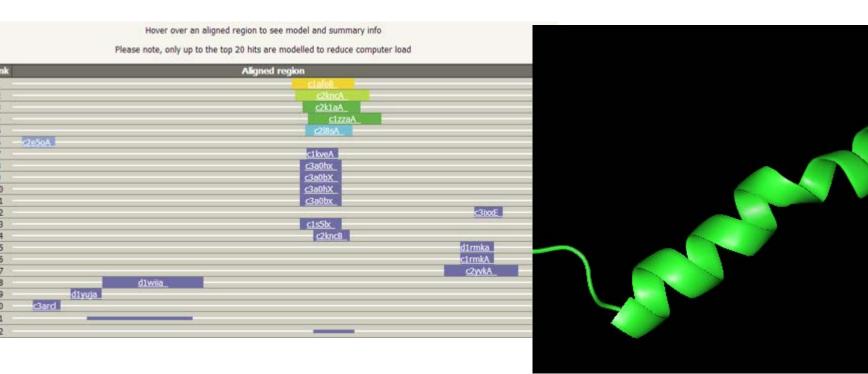
5. Blast and Phylogenetic tree

Gene sequence blast
 Just finding that 800-1000bp regions were conserved.


Blastp

 Use npdc1 protein sequence to Blastp, with BLOSUM62, finding that only Rat, Mouse protein npdc1 sequence were found.

Alignments Download GenPept Graphics Distance tree of results Multiple alignment							
Description		Total score	Query	E value	Ident	Accession	
RecName: Full=Neural proliferation differentiation and control protein 1; Short=NPDC-1; Flags: Precursor	162	162	88%	2e-45	42%	qi 22261810 Q9NQX5.2	
RecName: Full=Neural proliferation differentiation and control protein 1; Short=NPDC-1; Flags: Precursor	161	161	85%	5e-45	41%	qi 341941179 Q64322.2	
RecName: Full=Protein cab-1	63.9	63.9	42%	3e-10	35%	qi 6226923 Q93249.3	
RecName: Full=Zinc metalloproteinase nas-9; AltName: Full=Nematode astacin 9; Flags: Precursor	34.7	34.7	31%	0.94	29%	qi 57012912 P91137.2	


Uniprot annotation

- So we use Uniprot to get npdc1 protein sequences, but most of them were unreviewed.
- Multiple sequence alignment showed that Cterminal sequences were conserved.

6. Protein structure prediction and function

- Swissmodle: --No suitable templates found
- Phyre2:
- ---Just an a-helix (165-202 AA, 12%) was predicted

7. Conclusion

- Npdc1 is likely to be a transmembrane protein and interact with E2F-1, to reduce E2F-1 binding to DNA and transcription activity. In this way npdc1 may regulate cell proliferation and differentiation.
- Without npdc1 gene,E2F-1 may activate some gene expression, which may be involved in membrane generation or disintegration.
- Npdc1 may interact with Retinoid Acid pathway.

8. Acknowledgement

- We appreciate Professor Luo JC for teaching and discussion;
- We thank Professor Zhang Bo's guide in this project;
- We thank Wu Qian for providing materials;
 Zhang Ying for providing video of zebrafish development.

Thanks!