To predict new TALe-DNA code by SPDVB

Group 10 Members: 冷凤、梁芳、陆峰、王 倩倩、叶延桢

Outline

- 1\ what's TALe
- 2\ the history of TALe
- 3\ the issue we want to solve
- To predict new code of TALe-DNA
- 4\ the method by which we solve the issue
- mutate the 13th AA, choose the appropriate
- conformation, compute the H bond, then choose
- steady conformation with highest H bond
- 5\ result and summary
- 6\ prospect

1\ what's TA^A

TAL effectors, secrete bacteria, recognize host DNA s central domain of tandem repeats.

Each repeat comprises 33-35 conserved amino acids and targets a specific base pair using two hypervariable residues (known as RVD) at positions 12 and 13.

2\ the history of TALe

Found in plant pathogenic bacteria in the genus Xanthomonas in 1989

Currently, developed to be applied in gene know out

3\ the issue we want to solve

TALe targets a specific base pair using two hypervariable residues (known as RVD) at positions 12 and 13.

The code right now we can use in engineering:

C: HD

- T: NG
- A: NI
- G: NN

SA Repeat 5 Repeat 4 C Repeat 6 Repeat 11 Repeat 16 Repeat 7 Repeat 19 Repeat 3

The problem is : NN recognizes G base with low efficiency

How to improve it ? or is there new code for G with high efficiency?

4\ the method by which we solve the issue

Use SPDBV

1\ extract the TALe unit and its GC pairs

 $2\$ as to the possible 400(20*20) assembles, we fix the

12th AA as N. We mutate the 13th AA one by one.

3\ when we mutate the AA, we compute the H bond and their distance.

4\ we record the distance and the possible number of H bond.

5\ compared with the data together, we choose the strongest H bond without steric hindrance conformation as the predicted code.

Mutated

Mutated to Asp, see the new H bond

Avoide steric hindrance

We try 20 kinds of AA to fit the G

13th	А	Т	С	G	
GLN(E)		0	0	0	0
GLU (Q)		0	0	0	0
GLY (G)		0	0	0	0
HIS(H)	3.21; 3.24	2 4	0	1 2. 53	1 3. 21
ILE(I)		0	0	0	0

	А	Т	С	G
Asn(L)	0	0	0	0
Asn(K)	0	0	0	0
Asn(M)	2.68/2.67	2.68/2.67	2.68/2.67	2.68/2.67
Asn(F)	0	0	0	0
Asn(P)	0	0	0	0

To ensure the specificity of TALe to G base, we also checked the AA we tested corresponded with other bases: A T C

The data is updating..

5\ result and summary

• The most possible code we predicted for G base is :

The younger but stronger brother of ZFN

- As we know, ZFN has been used in gene knock out for decades.
- TALe will replace it?
- The technology , biological issue