烟草K+通道蛋白NKT4 的生物信息学分析

报告人: 向小华

小组: G07

成员: 向小华 陈俊宇 刘健伟 王若焱

选题意义

研究背景

进化分析

蛋白结构预测

同源建模

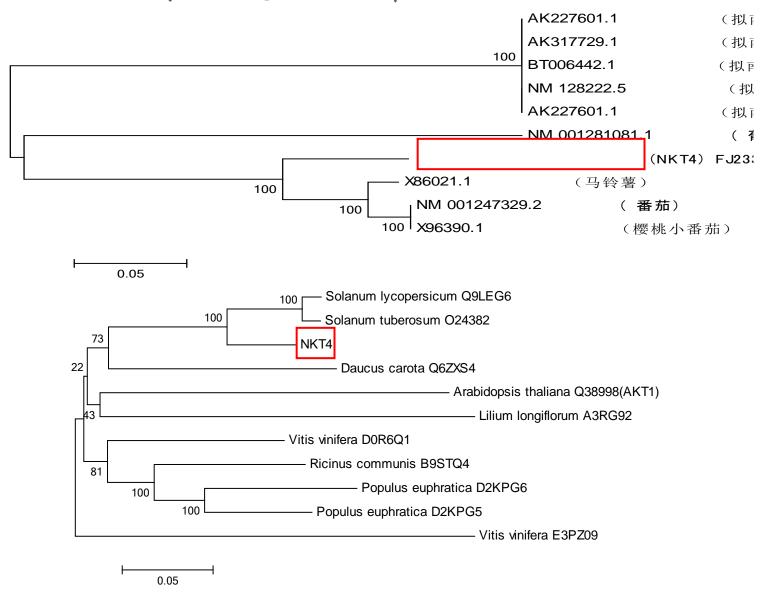
致谢

选题意义

- 1. 钾是植物生长发育所必需的矿质营养元素之一,是作作产量与品质形成的限制因素。植物中钾的吸收与转运依赖膜蛋白,主要包括钾离子通道和高亲和性的钾转运体。
- 2. 烟草是一种耗钾量很大的作物,烟叶含钾量又是衡量烟叶品质的重要指标之一。K+通道是允许K+特异通透质膜的离子通道,是烟草K+吸收的重要途径之一。
- 3.为获得烟草K+通道基因,为通过基因工程手段利用K+ 通道基因,进而提高烟叶品质、增强烟草抗逆性及开展 烟草钾高效育种提供理论与技术支撑。

研究背景

- 1.2007 年Sano 等利用同源克隆法首次克隆出烟草K+通道基因*NKT1、NTORK1、NKT2 和NtKC1,*其中*NKT1* 的主要功能是吸收K+。近几年,随着分子生物学技术的日益成熟和K+通道研究的不断深入,K+通道基因的研究以及烟草K+吸收机制的研究成为热点。但是对于烟草K+ 通道蛋白的分析研究较少。
- 2.本文拟通过相关文献的搜索对烟草K+通道基因*NKT4*的比对,从而进行烟草K+通道蛋白NKT4预测分析。


NKT4的获得与基本信息

○ 通过比对拟南芥、胡萝卜、番茄和马铃薯的K+通道 氨基酸序列得到了保守序列,设计简并引物,利用RT-PCR获得大小为490bp的普通烟草K+通道基因中间 片段。设计特异性引物,应用RACE方法得到5'末 端和3'末端cDNA序列。通过拼接并结合全长克隆及 测序验证,获得一个未报道的普通烟草K+通道基因, 并将其命名为NKT4(GenBank登录号为FJ233071)

o 在Uniport 中无相关信息。

	- Arresta
Protein Knowledgebase (UniProtKB)	NKT4 AND organism:"Tobacco "
0 result for NKT4⊠ AND organism:Tobacco	☑ in UniProtKB

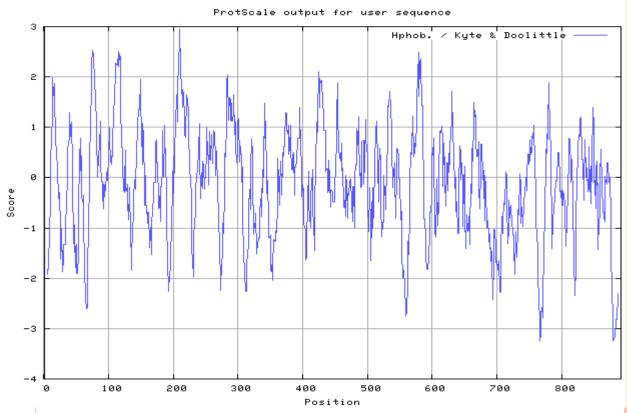
系统进化分析-MEGA5.0

K+通道蛋白的特征序列

NKT4	236	IGASMG-DFLHQSLWIRYITSIYWSIT <mark>TLTTYGYGD</mark> HPENTREMIFDIFYMLFNLGLTA
Solanum lycopersicum Q9LEG6	233	IGVAMD-DFLNQSLWIRYVTSIYWSII <mark>TLTTVGYGD</mark> HPENTREMIFDIFYMLFNLGLTA
Solanum tuberosum O24382	233	IGASMD-DFLNQSLWIRYITSIYWSI <mark>T</mark> TLTTVGYGD <mark>LHPENTREMIFDIFYMLFNLG</mark> LTA
Vitis vinifera D0R6Q1	232	IGASM-NNFLEQSLWIRYVTAIYWSII <mark>TLTTYGYGD</mark> HPENTREMIFDIFYMVFNLGLTA
Daucus carota Q6ZXS4	227	IGASIT-DFKNQSLWIRYVTSIYWSI <mark>T</mark> TLTTYGYGD <mark>LHAQNTGEMIYDIFYMLFNL</mark> GLTA
Ricinus communis B9STQ4	232	IGQSLGDNFLEQSLWIRYVTSIYWSI <mark>T</mark> TLTTYGYGD <mark>LHPVNTREMIFDIFYMLFNLG</mark> LTA
Arabidopsis thaliana Q38998(AKT1)	224	IGANVA-NFLEESLWMRYVTSMYWSII <mark>TLTTVGYGD</mark> HPVNTKEMIFDIFYMLFNLGLTA
Populus euphratica D2KPG6	233	IGAALGDNFLEQGIWIRYVTSIYWSII <mark>TLTTVGYGD</mark> LHPVNTSEMVFDIFYMLFNLGLTA
Populus euphratica D2KPG5	232	IGASLGDNFLEQSLWRRYVTSIYWSI <mark>T</mark> TLTTVGYGD <mark>L</mark> HPVNTREMLFDIFYMLFNLGLTA
Lilium longiflorum A3RG92	220	IGASMP-DFHEQSLWVRYVTSMYWSII <mark>TLTTVGYGD</mark> HAQNTGEMIFDIAYMLFDLGLTA
Vitis vinifera E3PZ09	238	LGLVMG-DLNTHSLWQRYVTSMYWSII <mark>TLTTTGYGD</mark> LHAVNTREMVFDIFYMVFNLGLTS
		[* : :: :: :: ** ***;*::****** <mark>*****</mark> ** ** **::** **::***

TxxTxGYGD

蛋白质理化性质分析(PROTPARAM) 亲疏水性分析(PROTSCALE)


Number of amino acids: 892

Molecular weight: 100340.9

Theoretical pI: 6.64

Amino acid composition:

A=1.	LLO	aciu	COMPOSICIO
		56	6.3%
Arg	(R)	60	6.7%
		49	5.5%
Asp	(D)	52	5.8%
Cys	(C)	15	1.7%
Gln	(Q)	30	3.4%
Glu	(E)	48	5.4%
Gly	(G)	63	7.1%
His	(H)	22	2.5%
Ile	(I)	46	5.2%
Leu	(L)	107	12.0%
Lys	(K)	36	4.0%
Met	(M)	17	1.9%
Phe	(F)	46	5.2%
Pro	(P)	33	3.7%
Ser	(S)	56	6.3%
Thr	(T)	50	5.6%
Trp	(W)	11	1.2%
Tyr	(Y)	26	2.9%
Val	(V)	69	7.7%
Pyl	(0)	0	0.0%
Sec	(U)	0	0.0%
(B)		0	0.0%
(Z)	I	0	0.0%
(X)	I	0	0.0%

MIN: -3.233, MAX: 2.956

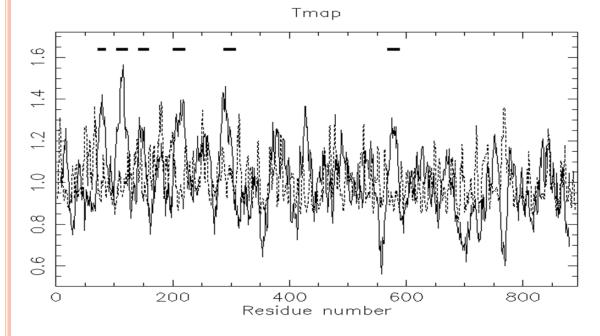
Scale: Hydropathicity.

Window size: 9

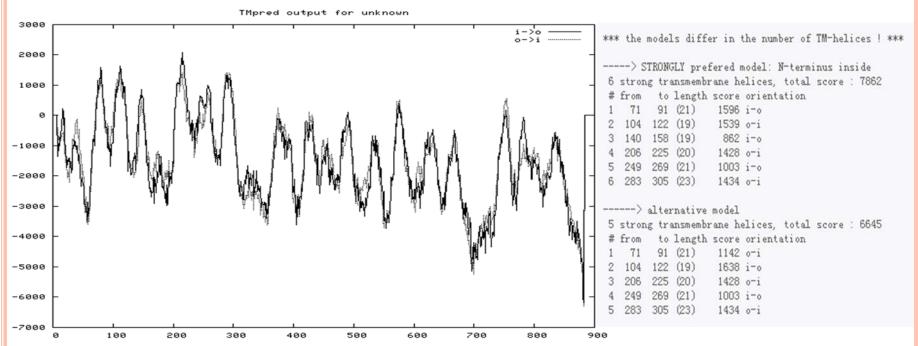
Scale not normalized.

Relative weight for window edges: 100 %

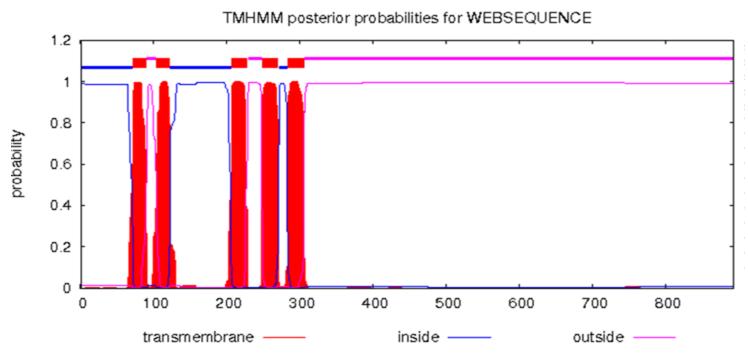
Weight variation model: linear


蛋白质二级结构预测(PSIPRED)

Secondary Structure Map

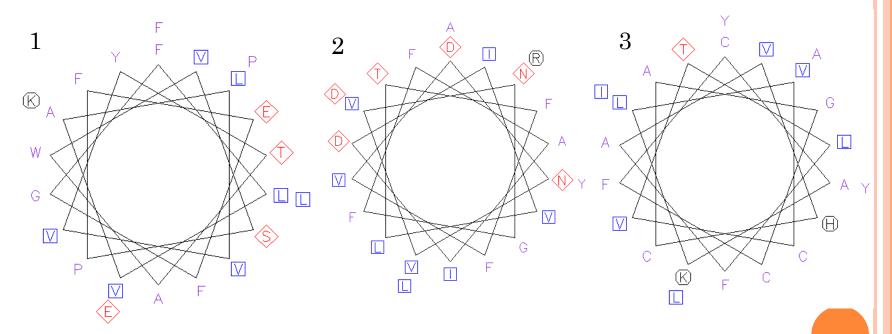

Feature predictions are colour coded onto the sequence according to the sequence feature key shown below.

1		G	D	¥	R	R	H	H	H	F	G	, v	L	. G	v	s		C	G	A	A	Q	E	Ι	E	Q	L	S	R	D	s	s	н	Ţ	s	L	s	T	G	I	L	P	s	L	G	Å	R	s	H	R	50
51	R	¥	K	L	Q	R	F	Ι	Ι	S	P	T	D	R	Н	T	R	S	T	E	T	F	L	¥	A	L	¥	¥	T	T	A	T	¥	S	P	F	E	F	G	F	L	E	K	P	T	G	P	L	Å	¥	100
101	T	D	H	¥	¥	H	G	F	F	A	I	D	I	Y	L	T	F	F	¥	A	Ţ	L	D	R	T	T	T	L	L	¥	D	H	H	K	K	Ι	Å	T	K	T	Å	S	T	T	F	L	F	D	¥	Ι	150
151	S	T	Ι	P	S	E	L	A	R	K	I	S	P	K	P	L	R	Q	T	G	L	F	H		L	R	L	T	R	L	R	R	¥	S	Å	L	F	Å	R	L	E	K	D	R	H	F	H	T	F	T	200
201	¥	R	C	A	K	L	¥	C	¥	T	I	. F	A	¥	H	C	A	G	C	F	Ţ	Ţ	L	Ι	A	Å	H	T	P	ı	P	T	K	T	T	Ι	G	Å	S		G	D	F	L	H	Q	S	L	T	Ι	250
251	R	Ţ	Ι	T	S	Ι	T	T	S	I	I	T	L	. T	T	¥	G	Ţ	G	D	L	H	P	E	I	T	R	E		Ι	F	D	Ι	F	T		L	F	H	L	G	L	T	A	T	L	Ι	G	H		300
301	T	H	L	¥	¥	H	G	T	S	R	I	R	K	ľ	R	D	T	I	Q	A	Å	S	S	F	A	Q	R	H	Q	L	P	Å	R	L	Q	D	Q		L	Å	H	L	C	L	K	F	R	T	D	S	350
351	E	G	L	Q	Q	Q	E	T	L	. E	S	L	. P	K	A	I	R	S	S	Ι	S	H	F	L	F	Ţ	S	L	¥	D	K	¥	Ţ	L	F	R	G	¥	S	I	D	L	L	F	Q	L	¥	S	E		400
401	K	Å	E	T	F	P	P	K	E	D	¥	ľ	L	. Q	H	E	Å	P	T	D	F	Ţ	Ι	L	¥	T	G	A	¥	D	L	L	¥	L	K	H	G	¥	E	Q	¥	¥	G	E	Å	K	T	G	D	L	450
451	C	G	E	Ι	G	¥	L	C	Ŧ	R	P	, đ	L	ľ	T	¥	R	T	K	R	L	C	Q	L	L	R		H	R	T	T	F	L	H	Ι	¥	Q	Å	H	¥	G	D	G	T	Ι	Ι		H	H	L	500
501		_																																														_		_	550
		•															_				_		•					_																					P	L	600
601																																																	_	-	650
651	G	D	¥	T	R	P	K	¥	H	G	S	S	A	L	H	¥	A	Y	C	E	G	H		E	I	¥	K	T	L	L	D	R	G	A	H	¥	D	Q	¥	D	E	H	G	T	T	P	R	D	L	Å	700
701	E	Q	Q	G	H	E	D	Ι	K	E	I	. F	E	S	G	E	¥		R	T	R	S	¥	D	P	Ι	P	E	E	R	H	G	¥	R	F	L	G	R	F	K	S	E	P	T	Ι	F	P	Å	S	H	750
751	G	ķ	S	F	L	Å	S	G	G	S	Ι	. G	B	S	R	P	R	R	R	T	H	H	F	H	H	\mathbf{S}	L	F	G	Ι		S	Å	¥	Q	T	H	E	H	D	¥	¥	L	S	A	H	E	Å	H	¥	800
801	S	¥	T	T	T	K	T	Ŧ	A	P	H	Y	T	V	C	C	P	E	K	G	D	H	G	G	K	L	¥	L	L	P	P	S	F	Q	E	L	L	Q	Ι	G	F	H	R	T	G	Ι	L	Q	¥	K	850
851	¥	Ι	S	K	D	G	Å	E	Ι	D	I	I	E	L	Ι	R	D	G	D	R	L	Ι	F	¥	S	D	K	E	H	H	E	T	D	H	H	Q	H	G	D	E	L	R									


Key Helix Sheet Disordered Dompred Boundary DomSSEA Boundary
Annotations M L E A

蛋白质跨膜区分析 (TMAP&TMPRED)

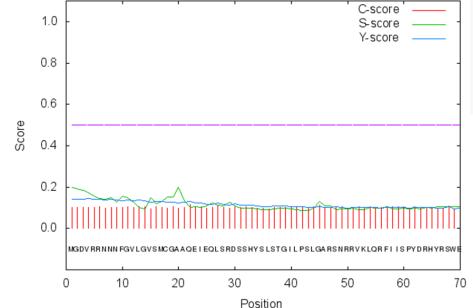
蛋白质跨膜区分析(TMHMM&SOSUI)



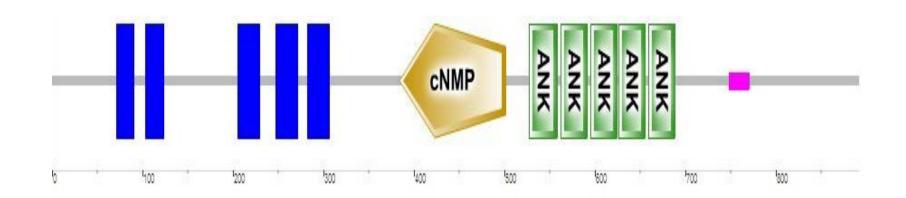
This amino acid sequence is of a MEMBRANE PROTEIN which have 3 transmembrane helices.

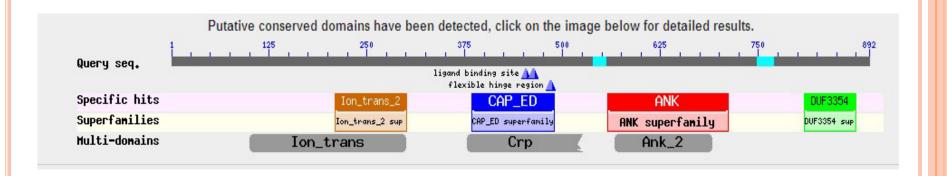
No.	N terminal	transmembrane region	C terminal	type	length
1	72	FLVALVVYTAWVSPFEFGFLEKP	94	SECONDARY	23
2	102	DNVVNGFFAIDIVLTFFVAYLDR	124	PRIMARY	23
3	203	CAKLVCVTLFAVHCAGCFYYLIA	225	SECONDARY	23

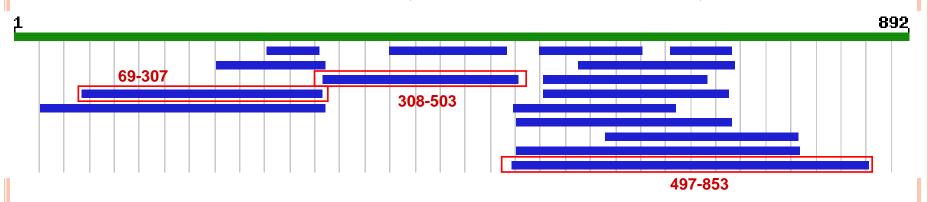
蛋白质跨膜区分析并绘制螺旋图(PEPWHEEL)

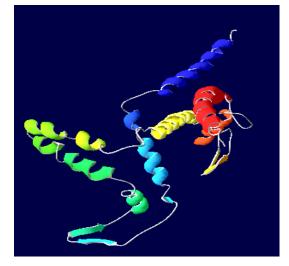

程序	预测的螺旋												
	1	2	3	4	5	6	7						
Tmap	68-89	99-127	137-163	197-225		283-311	564-592						
Tmpred	71 - 91	104-122	140-158	206-225	249-269	283-305							
TMHMM	72-89	104-122		206-228	248 - 270	283-305							
SOSUI	72-94	102-124		203-225									

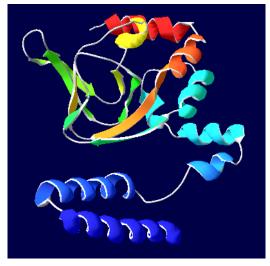
亚细胞定位分析 (TARGETP 1.1SERVER) 信号肽预测(SIGNALP 4.1SERVER)

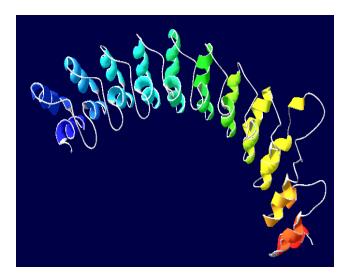

Name	Len	cTP	■TP	SP	other	Loc	RC	TPlen
Sequence	892	0.072	0.213	0.016	0.570		4	
cutoff		0.000	0.000	0.000	0.000			


SignalP-4.1 prediction (euk networks): Sequence

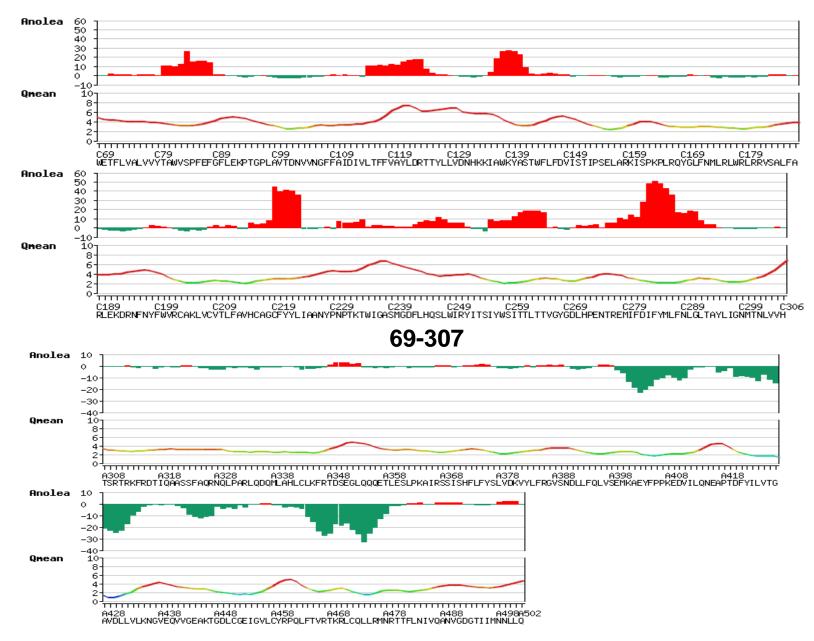

# Measure	Position	Value	Cutoff	signal p	peptide?
max. C	22	0.116			
max. Y	11	0.138			
max. S	20	0.200			
mean S	1-10	0.162			
D	1-10	0.151	0.450	NO	
Name=Seque	mce SP='	N∩' D=O	151 Decut	off=0.450	Networks=SignalP-noTM

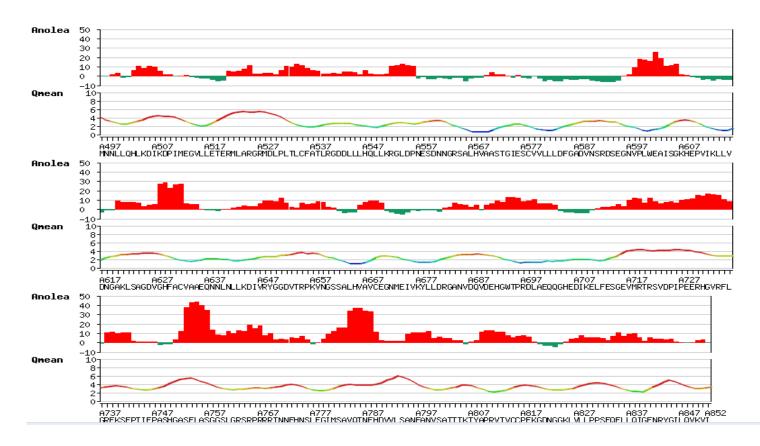

结果域预测(SMART&NCBI)





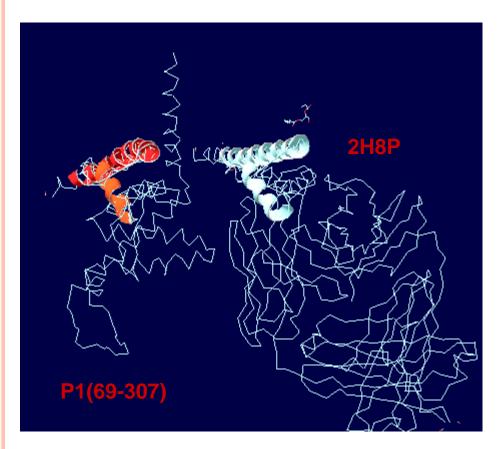
同源建模(SWISS-MODEL)

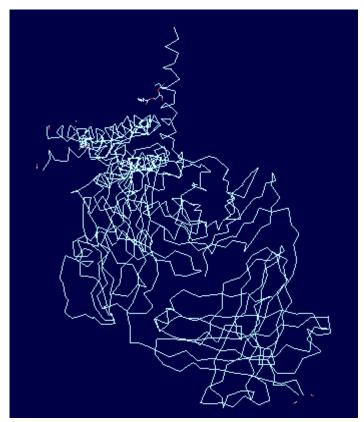


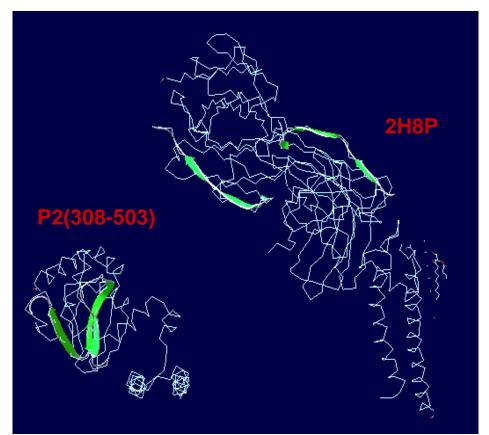

69-307

308-503

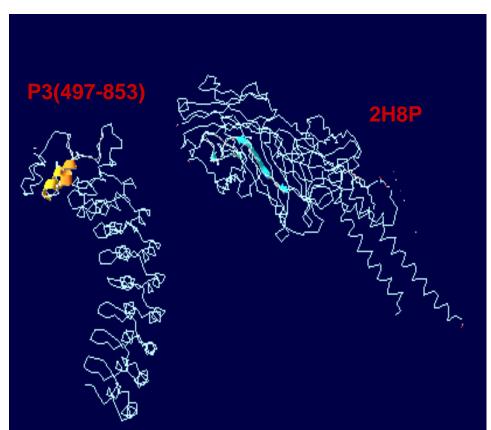
497-853

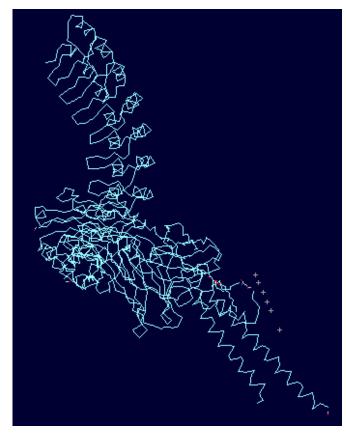



308-503


497-853

预测模体与同源模体 (2H8P) 的FIT比较




同源模体2H8P中的C链60-78位及D链的79-111位共52个氨基酸与P1(69-307)预测模体中250-301为氨基酸匹配。

同源模体A链205-219及B链中1-16为共31个氨基酸氨基酸与P2(308-503)预测模体中的A链406-437位匹配。

同源模体A链109-143共35个氨基酸氨基酸与P3(497-853)预测模体中的A链795-829位匹配。

主要参考文献

- [1] Karena L Waller, Characterization of two putative potassium channels in Plasmodium Falciparum, Malaria Journal 2008, 7:19.
- [2] Asher et al. World Journal of Surgical Oncology 2010, 8:113.
- [3] Ashley M K, Grant M, Grabov A, Plant responses to potassium deficiencies: a role for potassium transport proteins[J] J Exp Bot, 2006, 57: 425-436.
- [4] KalimS, LuthraYP, Gandhi, SK. Roleof zincandmanganesein, resistanceof cowpearoot rot [J]. Journal of Plant Diseases and Protection (Germany), 2003, 110(3): 235-243.
- [5] 刘晓燕, 何萍等, 钾在植物抗病性中的作用及机理的研究进展, 植物营养与肥料学报2006,12(3):445-450.
- [6] 严蔚东,王校常等,利用外源钾通道基因改良水稻钾素营养,中国水稻科学(ChineseJ RiceSci), 2002, 16(1):77~79.

致谢

- 由衷的感谢静初先生对我们课程的悉心指导和谆谆教诲, 让我们学习到了更加全面的生物信息学知识!从中也体会 了更多的乐趣。
- 非常感谢组员及同学们的支持和帮助,使我们的学习更轻松!
- •特别感谢班长任磊同学及杨春红同学的大力帮助。