Protein Prediction and Structure Analysis of Nterminal of E3L Protein in SPPV

绵羊痘病毒E3L蛋白N端结构与功能预测和分析

G12:范彦雷 卢昌 沈友明 杨超 组长:杨超 报告:卢昌

Contents

- 1 Background
- 2 Basic information
- 3 Sequence analysis of Za family and SPPVZae31
- 4 3D structure analysis of SPPVZae31
- \cdot 5 Conclusion

1. Background

The E3 protein of vaccina virus, the prototypic member of erthopoxviruses, functions as an inhibitior of innate immune signaling and is essential for vaccinia replication in vivo and in many human cell culture systems.

E3L is vary conserved in variola and related viruses and plays a key role in cirumventing the IFNmediated defense of host cells.(Moss.B, J.L.Shisler. Immunology 101 at poxvirus U: immune evasion genes. Semin Immunol, 2001, 13:59-66.)

					SPPV						GTPV			L	SDV						
ORF	Accession		7	ru			SA		NK		PL,		GV					MYXV	VACV		
no. ^d	no. ^b	Position	Length	Chan	ges ^d	Length	Changes	% Id ^e	Length	Position	Length	Changes	Length	Length	% 1	d vs.	Predicted structure and/or function f	OPE 8	OPE		
				vs. SA	vs. NK		vs. NK	vš. PL,	Ū		B	vs. GV	B	magar	SA PL		SA PL		Treatered so detaile and/or function	0Kr	ORF
001	M28823	589-113		Q/H			H/Q	97		648-172				159	96	99		M003.1	B15R		
002	M28823 M28823	2167-1235	311	+72 aa	+72 aa			97		2056-1337				131 240	97	99	ER-localized apoptosis regulator	M003.2 M004	B9R		
004		2242 2746	168			169		02	120	3222 3843				57			W 10	M004.1			
005		3455-2763	108			108		92	108	2555-2842				170	93	93	IL-10 II_1P		DICD		
007		4545-3481						96		4640-3576				355	98	98	IL-IR		CIOL		
008		5454-4630		· I/N	I/N			94		5530-4706				275	94	95	Interferon-y receptor	M007	B8R		
009														230			α-Amanitin sensitive protein	M139R	N2L		
010		6646-6161		V/A				93		6631-6146				162	95	94	LAP/PHD-finger protein	M153R			
011	\$78201	7818-6697	374	A/T	A/T	374		92	374	7826-6684				381	92	95	G protein-coupled chemokine receptor				
012	\$78201	8557-7925						95		8562-7930				211	95	95	Ankyrin repeat protein	M149R	B4R		
013	578201	0010 0653						0.2		0000 0/20				341			IL-IR		B16R		
014		10300-0008						93		9903-9637				89	96	96	elf20-like PKR inhibitor	M156R	K3L		
016		10698-10399	100			100		94	100	10683-10396	96		96	101	95	96	IL-18 binding protein	MOLOT	CUB		
017		11219-10692		D/N	D/N			95	100	11204-10677	,,,		,,,	176	94	96	Antianoptotic virulence factor	MOTOL	CHK		
018		11701-11264						99		11683-11246				146	98	97	dUTPase	M012L	F2L		
019 ((a) (b)	13452-11746						93		13414-11729	562		282	569	95	95	Kelch-like protein	M014L	F3L		
020	.0)	14488-13526						97		14444-13482			251	321	98	98	Pibonucleotide reductore, quall subunit	MOLET	EAL		
021		14767-14531	79	A/S		79	S/A	86	79	14719-14483	79		79	86	81	82	Richaereoude reductase, sman subuint	M015L	Let C		
022		15148-14840	103			103		85	103	15114-14791	108		108	112	83	87		111011015			
023		15557-15342						95		15534-15319				72	97	97		M018L	F8L		
024		16286-15639						97		16265-15618				216	98	98		M019L	F9L		
025		17607-16267						99		17586-16246				447	98	99	Ser/Thr protein kinase; virus assembly	M020L	F10L		
026		20200 18474	620	DALN	DAL N	640			< 10	20/20 10012	c.20		630	302					FIIL		
028	AF119594	21509-20400	0.59	T/A	G/C T/A	640	GIC	90	040	20429-18513	039		6.39	370	9/	97	EEV maturation	M021L	F12L		
029	AL 117574	22148-21714		1/4	0,0,0,7		u/C	99		22187-21753				145	98	100	Painityiated EEV envelope protein	M022L	FISL		
030		22881-22225						96		22919-22263				219	\$7	97		M024L	F16L		
031		22953-23264						95		22994-23305				104	96	95	DNA-binding virion core protein	M026L	F17L		
032		24695-23274		K/N	K/N			97		24736-23315				474	97	98	Foly(A) polymerase large subunit \ensuremath{PAP}_L	M027L	EIL		
034		27444-26914		I/M				97		27530-26955	192		192	177	97	97	dsRNA-binding PKR inhibitor	M029L	E3L		
036		28087-27506	194	D/E K/N	D/E K/N	194		97	194	20200 20060	377		511	201	90	07	BNA	MOSTR	ESK		
037		29315-31012		10/2,1011	S/R	.,-	S/R	98	124	29376-31073				566	00	97	RIVA polymerase subuint RF050	M030L	E4L E6R		
038		31025-31819	265			265		99	265	31086-31880	265	N/D	265	266	99	99		M033R	E8R		
039		34851-31822		S/L,A/S	S/L,A/S			97		34912-31883				1010	98	98	DNA polymerase	M034L	E9L		
040		34885-35169			S/T		S/T	95		34946-35230				95	98	96	IMV redox protein, virus assembly	M035R	E10R		
041		35561-35172						92		35622-35233				130	93	97	Virion core protein		E11L		
042		37602-35551		H/N	H/N			96		37663-35612				684	97	97		M036L	OIL		
043		38032-37711	71			71		99	71	38/13-3///2	71		71	314	99	99	DNA-binding virion core protein	M038L	IIL		
045		39705-38878	<i>'</i>	V/I	V/I	11		97	71	30766-38030	/1		/1	276	95	95	DNA binding abagahanatain	M039L	12L 121		
046		40001-39768		•/•	•71			97		40049-39816				276	100	97	DNA-binding prosphoprotein	M040L	151		
047		41203-40022						98		41251-40070				394	98	99		M042L	IGL		
048		42497-41199	•	-				99		42545-41247	•			433	99	100	Vicion erro protein	M043L	17L		
0.9	omba	rison	OT	Carv	gen	ome	es a	ne	Vac	Cinte ^s	VIL	is a	eno	me	S 97	•	KH-II, INAH MACAN	M044R	18R		
050		46317-44533	595			595		98	595	46365-44581	595	- 3	595	596	98	98	Metalloprotease, virion morphogenesis	M045L	GIL		
02	L.A	40040-47305	, et	al.	The (Gen	ome	259 (of S	ACC	box	an	d G		9 8	100	Purative transcriptional elongation factor	M0471	C21 C31		
053		47652-47275						98		47700-47323	•			126	99	99	Glutaredoxin 2, virion morphogenesis	M048L	G4L		
V	iroloc	7 9, 20	002	, 76:	6054	4-6	061														
	-			•		-		1 de 1													

Genomic context | ♠ | ? . Sequence: NC_004002.1 (26911..27444, complement) NC 004002.1 29305 🕨 22953 🕨 SPPV_29 SP10_321 SPPV_27 SPPV_28 SPPV_30 SPPU 31 Genomic regions, transcripts, and products • 2 ? Go to reference sequence details NC 004002 🗸 Genomic Sequence Go to nucleotide Graphics FASTA GenBank $\langle \neg \varphi \rangle$ 💦 Tools 🛛 | 🏶 Configure 🖉 🤋 🗸 ATG NC_004002.1: -27K..-27K (598b-) Find on Sequence: 9 + -27,450 -27,400 -27,350 |-27,300 -27,250 |-27,200 |-27,150 |-27,100 -27,050 |-27 K -26,950 -26,90 Genes NP_659605.1 SPPV 30 80 100 120 160 180 260 280 300 320 360 380 400 420 440 460 480 500 534 40 60 1.40 200 220 240 340 + -+ +---+--+--+---_ 659606.1

 The E3 protein is composed of a carboxy-terminal dsRNA binding domain and an anmino-terminal Z-DNA binding domain. While wild-type vaccinia virus displays a broad cellular tropism and is highly resistant to effects of interferon(IFN), deletion of E3 results in restricted tropism and sensitivity ro IFNs.

 \cdot The ability to bind Z-DNA is essential for E3L activity. A replacement of the N-terminal domain of E3L with a domain defective in Z-DNA binding results in a less pathogenic or nonpathogenic virus.

 Z-DNA-forming sequences found near the transcription start site can flip into the Z-conformation in some actively transcribing genes, and E3L may bind to the Z-DNA segment of such genes.

2. Basic protein information

		Run BLAST
LOCUS	NP 659606 177 aa linear VRL 26-MAR-2010	Identify Conserved Domains
DEFINITION	dsRNA-binding PKR inhibitor [Sneeppox virus].	Lishlisht Oserress Fasture
ACCESSION	NP_659606	Highlight Sequence Features
DBUTNK	NP_059600.1 GI:2149248/	Find in this Sequence
DBSOURCE	PERSEC: accession NC 004002 1	
KEYWORDS	RESEX. RECESSION <u>NO OCTOBELL</u>	
SOURCE	Sheeppox virus	Articles about the SPPV 30 gene
ORGANI	Sheeppox virus	The genomes of sheepnox and goatnox viruses
	Viruses; dsDNA veruses, no RNA stage; Poxviridae; Chordopoxvirinae;	[J Virol. 2002]
	Capripoxvirus.	
REFERENCE	1 (residues 1 to 177)	See all
AUTHORS	Tulman,E.R., Afonso,C.L., Lu,Z., Zsak,L., Sur,J.H., Sandybaev,N.T.,	
	Kerembekova, U.Z., Zaitsev, V.L., Kutish, G.F. and Rock, D.L.	
TITLE	The genomes of sheeppox and goatpox viruses	Protein clusters for NP_659606.1 📥
JOURNAL	J. Virol. 76 (12), 6054-6061 (2002)	Double-strand RNA-binding protein - double-
PUBMED	12021338	strand RNA-binding protein; has adenosine
REFERENCE	2 (residues 1 to 177)	deaminase activity (converts adenosines to
CONSRTM	NCBI Genome Project	Total proteins: 18
TITLE	Direct Submission	Total genera: 6
JOURNAL	Submitted (14-JUN-2002) National Center for Biotechnology	Conserved in: Chordopoxvirinae
	Information, NIH, Bethesda, MD 20894, USA	
REFERENCE	3 (residues 1 to 177)	
AUTHORS	Tulman,E.R., Afonso,C.L., Lu,Z., Zsak,L., Sur,JH.,	More about the gene SPPV_30 📥
	Sandybaev, N.T., Kerembekova, U.Z., Zaitsev, V.L., Kutish, G.F. and	SPPV 30 gene
	Rock, D.L.	Also Known As: SPPV_30
TITLE	Direct Submission	
JOOKNAL	Submitted (SI-JAN-2002) Airican Swine rever Kesearch, Fium Island	
	Animal Discase Center, 0.5. Dept. Agriculture, Agricultural Desearch Service D.O. Boy 848 Greenport NV 11044-0848 USA	Related information
COMMENT	PROVISIONAL REFSEC: This record has not yet been subject to final	Diale
ooninini	NCBI review. The reference sequence was derived from SPPV 30.	BLINK
	Method: conceptual translation.	Related Sequences
FEATURES	Location/Oualifiers	BioProject
source	1177	ODD Occurst Describe
	/organism="Sheeppox virus"	CDD Search Results
		O

Protein	1177								
	<pre>/product="double-strand RNA-binding protein"</pre>	Protein Clusters							
	/calculated_mol_wt=20401	PubMed							
Region	1177	DubMod (DofSon)							
	/region_name="PHA03103"								
	/note="double-strand RNA-binding protein; Provisional"	PubMed (Weighted)							
Dester	/db_xref="CDD: <u>177529</u> "	Related Structures (List)							
Region	/region pame="z-alpha"	Related Structures (Summary)							
	/note="denosine deaminase z-alpha domair; c102659"	Taxonomy							
	/db xref="CDD.207691"	raconomy							
Region	104169								
	/region_name="DSRM"								
	/note="Double-stranded RNA binding motif. Binding is not	Recent activity							
	sequence specific but is highly specific for double	Turn Off Clear							
	stranded RNA. Found in a variety of proteins including	dsRNA-binding PKR inhibitor [Sheepnox							
	dsRNA dependent protein kinase PKR, RNA helicases,	virus]							
	Drosophila staufen protein, E. coli RNase III; cd00048"								
	/db_xref="CDD: <u>28930</u> "	 dskivA-binding PKR inhibitor[All Fields] (110) 							
Site	order(104,110111,152155,158)	(113)							
	/site_type="other"	Q dsRNA-binding PKR inhibitor (119)							
	/note="dsRNA binding site [nucleotide binding]"	Protein							
	/db_xref="CDD: <u>28930</u> "	See more							
CDS	1177								
	/locus_tag="SPPV_30"								
	/coded_by="complement(NC_004002.1:2691127444)"								
	/note="double-strand RNA-binding protein; has adenosine								
	deaminase activity (converts adenosines to inosines);								
	involved in viral immune evasion, the poxviridae are								
	enveloped unsegmented asbNA viruses; unlike many asbNA								
	viruses that replicate in the nost nucleus poxviruses								
	encode their own replication machinery and therefore								
	replicate in the cytoplasm; viral genes are expressed in a bi-phasic marrow with early genes genes encoding								
	proprieturel moteins involved in general replication and								
	hon-structural proteins involved in genome reprication and								
	de yenes encourny one viral scructural proteins" /db wref="CeneID:044663"								
	/ cm_rici-"Genein; 511005"								

^

v

Alignment of E31 in SPPV and VACV

Pairwise Alignment Result										
LENGTH	SCORE	IDENTITY	SIMILARITY	GAPS						
191	297.0	66/191 (34.6%)	96/191 (50.3%)	16/191 (8.4	16/191 (8.4%)					
VACV	- 1 MSKIY :	-IDERSNAEIVCEAIR	TIG-IEGATAAQLTRQLNMI	EKRÈVNKALY	48					
SPPV	1 MY	1MYSCDEVDSYELVKKIVNNLSESESITAIEISKKLNIEKSNVNKQLY								
	49 DLQRS	AMVYSSDDIPPRWFM1	EADKPDADAMADVIIDDVS	REKSMREDHK	98					
	48 KLHND	GFIFMIRSNPPKWFKK	NGIDNDDNI	ENNNTKKLNK	86					
	99 SFDDV	IPAKKIIDWKGANPVI	VINEYCQITRRDWSFRIES	GPSNSPTFY	148					
	87 SFSDT	IPYYKIVLWKEKNPCS	AINEYCQFTSRDWYINISS	CGNGRKPMFL	136					
	149 ACVDI	DGRVFDKADGKSKRDA	KNNAAKLAVDKLLGYVIIR	189 						
	137 ASVIT	SGIKFFPFIGNTKKFA	KOKSTKRTTDFLINTSTIK	177						

PEPSTATS o	of dsRNA-bir	nding from 1 to 177								
Molecular	weight = 20	0532.49	Residues	= 177						
Average Re	esidue Weigh	ht = 116.003	Charge = 8.5							
Isoelectri	ic Point = 9	9.6391								
A280 Molar Extinction Coefficient = 26030										
A280 Extir	nction Coef:	ficient 1mg/ml = 1.27		~						
Improbabil	lity of expi	ression in inclusion	bodies = U.	911						
Kesidue		Number	Mo⊥e‰		DayhoffSt	at				
A = Ala		4	2.260		0.263					
B = Asx		0	0.000		0.000					
C = Cys		4	2.260		0.779					
D = Asp		9	5.085		0.924					
E = Glu		11	6.215		1.036					
F = Phe		10	5.650		1.569					
G = Gly		6	3.390		0.404					
H = His		1	0.565		0.282					
I = Ile		21	11.864		2.637					
J =		0	0.000		0.000					
K = Lys		24	13.559		2.054					
L = Leu		9	5.085		0.687					
M = Met		3	1.695		0.997					
N = Asn		20	11.299		2.628					
0 =		0	0.000		0.000					
P = Pro		6	3.390		0.652					
Q = Gln		3	1.695		0.435					
R = Arg		4	2.260		0.461					
S = Ser		18	10.169		1.453					
T = Thr		8	4.520		0.741					
V =		0	0.000		0.000					
V = Val		6	3.390		0.514					
W = Trp		3	1.695		1.304					
X = Xaa		0	0.000		0.000					
Y = Tvr		7	3, 955		1, 163					
$7 = G_{1x}$		0	0 000		0 000					
D		- -	0.000		0.000					
Property	Kesi dues	Number		Mole%						
Tiny		(A+C+G+S+T)		40		22, 599				
Small		(A+B+C+D+G+N+P+S+T+V)81		45.763					
Aliphatic	(A+I+L+V)	40		22.599						
Aromatic	(F+H+W+Y)	21		11.864						
Non-polar	(A+C+F+G+I	+L+M+P+V+W+Y)	79		44.633					
Polar		(D+E+H+K+N+Q+R+S+T+Z) 98		55.367					
Charged		(B+D+E+H+K+R+Z)		49		27.684				
Basic		(H+K+R)		29		16.384				
Acidic		(B+D+E+Z)	20		11.299					

Averaae flexibility

ProtScale

User-provided sequence:

1 <u>0</u>	2 <u>0</u>	3 <u>0</u>	4 <u>0</u>	5 <u>0</u>	6 <u>0</u>
MYSCDEVDSY	2 <u>0</u>	SESESITAIE	ISKKLNIEKS	NVNKQLYKLH	NDGFIFMIRS
7 <u>0</u>	8 <u>0</u>	9 <u>0</u>	10 <u>0</u>	11 <u>0</u>	12 <u>0</u>
NPPKWFKKNG	IDNDDNENNN	TKKLNKSFSD	TIPYYKIVLW	KEKNPCSAIN	EYCQFTSRDW
13 <u>0</u>	14 <u>0</u>	15 <u>0</u>	16 <u>0</u>	17 <u>0</u>	NTSIIKF
YINISSCGNG	RKPMFLASVI	ISGIKFFPEI	GNTKKEAKQK	STKRTIDFLI	

SEQUENCE LENGTH: 177

Using the scale Average flexibility, the individual values for the 20 amino acids are:

Ala: 0.360 Arg: 0.530 Asn: 0.460 Asp: 0.510 Cys: 0.350 Gln: 0.490 Glu: 0.500 Gly: 0.540 His: 0.320 Ile: 0.460 Leu: 0.370 Lys: 0.470 Met: 0.300 Phe: 0.310 Pro: 0.510 Ser: 0.510 Thr: 0.440 Trp: 0.310 Tyr: 0.420 Val: 0.390 : 0.485 : 0.495 : 0.428

Weights for window positions 1,...,9, using linear weight variation model:

	DEPENDENT OF THE		
	FIOLOCOI	# Please cite:	
	Macro	# Garnier, Osguthorpe and Robson (1978) J. Mol. Biol. 120:97-120	
	Utility	# #	
	Resource	* #	
	User Space	. 10 . 20 . 30 . 40 . 50 MYSCDEVDSYELVKKIVNNLSESESITAIEISKKLNIEKSNVNKQLYKLH helix HUHHHHHHHH sheet E EE EE	
	My Data	turns I I I I	
	My Literature	coil CCCCC C . 60 . 70 . 80 . 90 . 100	
	My MetaPackage	NDGFIFMIRSNPPKWFKKNGIDNDDNENNNTKKLNKSFSDTIFYYKIVLW	
	My Toolbox	helix HUHHH H sheet FERER EE EE EE EE EE	
	History	turns TTT I TTT TT T TTTT TT	
æ	Account	coil CCC CCCCC C . 110 . 120 . 130 . 140 . 150 KEKNPCSAINEYCQFTSRDWYINISSCGNGRKPMFLASVIISGIKFFPEI belix H HH H	
	My Account	sheet EE EEE EEE EEE	
	My Group	turns II IIIII IIIIIII I I I coil C CC CC	
	Logout	. 160 . 170 GNTKKEAKQKSTKRTIDFLINTSIIKF	
	1	helix HOUDOUDOH sheet REFEREN ERF	
		turns T TT	
		coil CCCC	
		# #	
		# Residue totals: H: 52 E: 50 T: 50 C: 25 # percent: H: 32.3 E: 31.1 T: 31.1 C: 15.5 #	
		# #	
		# Total_sequences: 1 # Total_hitcount: 52	
		#	
		8	×
			-

Trans membrane

SignalP predictions

SignalP-NN result:

<u>data</u>

>	dsRNA-	-bin	ding	leng	th = 70					
ŧ	Measu	ire	Position	Value	Cutoff	signal	peptide			
	max.	С	29	0.146	0.33	NO				
	max.	Y	10	0.026	0.32	NO				
	max.	s	1	0.063	0.82	NO				
	mean	s	1-9	0.057	0.47	NO				

SignalP-HMM result:

data

>dsRNA-binding Prediction: Non-secretory protein Signal peptide probability: 0.000 Signal anchor probability: 0.000 Max cleavage site probability: 0.000 between pos. -1 and 0

Using BLAST to search the similary sequence of E3L in the protein database.

The result shows that there exist sequences when align conserved domain using blastp. From the above image we can see E3L protein consists of two superfamilies, z-alpha superfamily and DSRM superfamily

Distribution of 50 Blast Hits on the Query Sequence

Figure. Evolutionary relationships of taxa

The evolutionary history was inferred using the Neighbor-Joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test are shown next to the branches. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site. The analysis involved 20 amino acid sequences. All positions containing gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA5.

3. Sequence analysis of Za family and SPPVZae31

- >SPPVZae31
- SCDEVDSYELVKKIVNNLSESESITAIEISKKLNIEKSNVNKQLYKLHNDG FIFMIRSNPPKWFKKNGI
- >YabZae31
- CTVNDAEIFSLVKKEVLSLNTNDYTTAISLSNRLKINKKKINQQLYKLQKE DTVKMVPSNPPKWFKNYNC
- >YmtvZae31
- GCENDVKTFSLVKNEVMMLNVDEYTTSIDISNKLKINKKKINKQLYKLQK EGVLKMVPSNPPKWFKNCNC
- >vvZae31
- KIYIDERSNAEIVCEAIKTIGIEGATAAQLTRQLNMEKREVNKALYDLQR SAMVYSSDDIPPRWFMTTEA
- >ovZae31
- MACECASLILELLRKSDDKLPAKQIAKELGISKHEANRQLYRLLDSDEVCCE DGNPPRWFVECAP
- >svZae31
- SDISNEDVYSLVKQEVDSLPVGNFITAVEISKKIEKEKSSINRQLYALYQQ
 GYIDMVPACPPKWYK-RNQ
- >hZaADAR1
- ELSIYQDQEQRILKFLEELGEGKATTAHDLSGKLGTPKKEINRVLYSLAKKG KLQKEAGTPPLWKIAVST
- >mZaDLM1
- DLSTGDNLEQKILQVLSDDGGPVKIGQLVKKCQVPKKTLNQVLYRLKKEDR VSSPEPATWSIGGAA

Multiple Sequence Alignment

Species/Abbry	7											*	*	* *	*				*	*		
1. SPPVZe31	S	CDEV	DSY.	E L V K	(K <mark>IV</mark> I	4N <mark>L</mark> S	ESES	3 I T A I	IEI	5 K K I	NIF	K 5 N	V N K	Q <mark>LY</mark>	E L	INDG	FIF	MIR	SNP	9 FEW	. KK	N <mark>G</mark> I
2. YabZe3l	-CT	V N D A	E I F	SLVK	(<mark>k</mark> e v i	LS <mark>L</mark> N	T N <mark>D</mark> Y	(TT <mark>A</mark>	ISLS	5 N <mark>R</mark> I	KIN	KK	INQ	Q <mark>L Y</mark>	E L (K E D	T <mark>V</mark> K	MVP	SNP	PEW	I <mark>K</mark> N	YNC
3. YmtvZe3l	- <mark>G</mark> C	E <mark>N</mark> D V	K T F	SLVK	(NEVN	4 M L N	V D E <mark>N</mark>	TTS.	IDIS	5 N <mark>K</mark> I	KIN	KK	INK	Q <mark>L Y</mark>	Z L (<mark>K</mark> EG	VLK	MVP	SIP	PEW	I <mark>K</mark> N	CNC
4. vvZe3l	K I Y	IDER	SN <mark>A</mark>	E I V C	EAI	K T I G	IE <mark>G</mark> -	- <mark>AT</mark> Ai	AQL1	[<mark>r</mark> q <mark>i</mark>	NM E	K R E	VNK	ALY	I L (RSA	MVY	SSD	DIP	PELW	T M T	T <mark>E</mark> A
5. ovZe3l		- <mark>M</mark> AC	ECA	SLII	ELL	R K – –	SDD	(<mark>LP</mark> A	K Q I <i>P</i>	A <mark>k</mark> e i	GIS	KHE	A N R	QLY	L	.D <mark>S</mark> D	EVC	CED	G1 P	PEW	I'VE	C <mark>A</mark> P
6. svZe3l	- <mark>S</mark> D	I S N <mark>E</mark>	DVY.	SLVK	(QEVI	DS <mark>L</mark> P	V <mark>G</mark> N E	TIT A	VEIS	S K K I	EKE	K 6 S	INR	Q <mark>L</mark> Y	7.L	. QQ <mark>G</mark>	YIC	M V P	<mark>a</mark> c p	9 FT W		NQ-
7. hZADAR1	- <mark>E</mark> L	S <mark>I Y</mark> Q	DQE	Q <mark>R</mark> II	K F L F	E E <mark>L G</mark>	E <mark>G K</mark> Z	ATTA	H <mark>DL</mark> S	5 <mark>G</mark> K I	GTE	KKE	INR	VLY	S LZ	. K K G	KLÇ	<mark>k</mark> E A	G I P	9 1. W	IA	V S T
8. mZDLM1	- D L	S T <mark>G D</mark>	N <mark>L E</mark> (Q <mark>K</mark> II	QVLS	5D	DG <mark>G</mark>	PVKI	GQL/	/ K K C	°Q ∀ E	KKT	ΙNQ	VLY	L	I <mark>k</mark> ed	r V S	S <mark>P</mark> E	P	AC W	IG	<mark>G</mark> AA
											- 1		U							JL	1 -	

The Z-DNA binding domain of the Za family.(Used WebLogo. http://weblogo.berkeley.edu/)

The Za family evolutionary history was inferred using the Neighbor-Joining method. The bootsrap consensus tree inferred 500 replicates is taken to represent the evolutionary history of the Za family analyed. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method and are in the units of the number of amino acid substitutions per site. The analysis involved 8 amino acid sequences. All positions containing gaps and missing data were eliminated. There were a total of 61 positions in the final dataset. Evolutionary analyses were conducted in MEGA5.

Pairwise Alignment Result										
LENGTH	SCORE	IDENTITY	SIMILARITY	GAPS						
70	149.0	28/70 (40.0%)	44/70 (62.9%)	1/70 (1.4%)						
SPPVZ??e31	1 -SCDEVDSY	ELVKKIVNNLSESESITAI	EISKKLNIEKSNVNKQIYKLHN	49						
YabZ??e31	1 CTVNDAEIF	SLVKKEVLSLNTNDYTTAI	SLSNRLKINKKKI NQQI YKLQK	50						
SPPVZ??e31	50 DGFIFMIRS: ::. :.	NPPHWFKKNGI 69								
YabZ??e31	51 EDTVKMVPS	NPPIWFKNYNC 70	•							

Sequence Alignment result of SPPVZae31 and YabZae31.

4. 3D structure analysis of SPPVZae31

 The predicted structure of sppvZaE3L suggests that it may belongs to the Za family of helixturn-helix (HTH), winged-helix Z-DNA-binding protein. It has an a/B architecture, consisting of two β -strands and three a-helices, although there are three *B*-strands in YabZaE3L- and vvZaE3L. The three a-helices (a1,a2, a3) form a core domain, which is flanked by a β -sheet of two antiparallel strands (β 1 and β 2). a2 and a3 form an HTH motif and two antiparallel Bstrands form the wing. (Sung Chul Ha, Neratur K.Lokanath, et al. A poxvirus protein forms a complex with left-handed Z-DNA: Crystal structure od a Yatapoxvirus Za bound to DNA [J]. PANS, 2004, 40: 14367-14372.)

The 3D structure of YabZae3l.

The 3D structure of SPPVZae31.

 The interaction between members of the Za family and Z-DNA is made up of residues in the a3 helix and the "wing". Three residues, Asn-47, Tyr-51, and Trp-69 as numbered in YabZaE3L-, central to interaction with Z-DNA, are completely conserved with Za family. We can find those three residues (Asn-43, Tyr-47, Trp-65) in sppvZaE3L at the relative positions by these two sequences alignment.

1SFU_B 8.8 0.0 CTVNDAEIFSLVKKEVLSLNTNDYTTAISLSNRLKINNKKINGQUMKEQKEDTVKMVPSNPKMFKNYNC> QMEAN_plotscolo 100.0 100.0SCDEVDSYELVKKIVNNLSESESITAIEISKKLNIENSNVKQMKEHNDGFIFMIRSNPKMFKKNGI>

(B): VAL8

sppvZaE3L

YabZaE3L

The carbon alpha (CA) fit of SPPVZae31 and YabZae31. SPPVZae31 is shown by green line. YabZae31 is shown by white line. RMS (CA)=0.06A.

The picture of fit molecule. RMS=0.

 Asn-47 and Trp-69 make water-mediated hydrogen bonds to the phosphate backbone and Tyr-51 makes a direct hydrogen bond to a phosphate in the DNA backbone in YabZaE3L. Asn-43 and Trp-65 may make water-mediated hydrogen bonds to the phosphate backbone and Tyr-47 may makes a direct hydrogen bond to a phosphate in the DNA backbone in sppvZaE3L.

Sung Chul Ha, Neratur K.Lokanath, et al. A poxvirus protein forms a complex with left-handed Z-DNA: Crystal structure od a Yatapoxvirus Za bound to DNA [J]. PANS, 2004, 40: 14367-14372.

5. Conlusion

 The E3 protein in SPPV might be composed of a Za domain and a DSRM domain. There are three a-helices (a1,a2, a3) and two antiparallel strands (B1 and B2). a2 and a3 form an HTH motif and two antiparallel β -strands form the wing. There are also three conserved residues, Asn, Tyr and Trp in sppvZaE3L.

 The sppvZaE3L might play an important role in the pathogenicity of SPPV. This result may allow the design of a class of antiviral agents against SPPV.

Acknowlege

- Thank you for Pro. Luo!
- Thank you for the efforts of all group members!