BTB-Zinc Finger Domain Protein Conservation Analysis

Group15 Members: Dongsheng Bai

Jianhang Yin

Mengjie Sun

Ziqian Li

01/07/2017

Outline:

- Introduction of the BTB-zinc finger protein family
- BTB domain function and sequence conservation analysis
- Zinc finger motif prediction and analysis

BTB domain exists in many protein families

Function: homodimerization domain

Zinc-finger domain:

Function: DNA binding domain

(Stogios et al., 2005)

BTB-zinc finger protein's role in Drosophila

Molecular Cell, Vol. 16, 737-748, December 3, 2004, Copyright ©2004 by Cell Press

The Centrosomal Protein CP190 Is a Component of the gypsy Chromatin Insulator

(Pai et al., 2004)

Loop is important for enhancer-promoter interaction

(Fukaya et al., 2016)

Alignment of btb domain in Drosophila

MEGA alignment :

Protein Sequences

Species#I Group Name	Γ		Τ								*																						1	*											*	*				*			*		
1. CHNMO	-	· N	A E	D	Р	Q	Q	Q	F	С	L	K	W	Ν	S	F	S	S	N	L	A	I.	Т	F	S	Ν	LI	F	< S	D	L	L	A	D	V	L	. 8	C	D	G	۷	V	- <mark> </mark>	F	< A	H	K	L	I.	L	A	A (C S	5	
2. FRU	G	2 0	G /	A I	М	D	Q	Q	F	С	L	R	W	Ν	Ν	н	Ρ	Т	Ν	L	Т	G	۷	L	Т	s	LI		R	E	А	L	C	D	V	ΓL	. A	C	E	G	Е	т	- 1	/ /	< A	ιH	Q	Т	I.	L	s	A C	C S	5	
3. MMD4	-	· N	A /	A	D	D	Е	Q	F	S	L	С	W	Ν	Ν	F	N	Т	N	L	s	A	G	F	н	Е	s I	_ 0	R	G	D	L	۷	D	V	S L	. A	A	E	G	Q	I.	- 1	/ /	< A	١H	R	L	٧	L	S	V	C S	5	
4. BRC4	-	· N	1 [וכ	D	Т	Q	Н	F	С	L	R	W	Ν	Ν	Y	Q	S	S	I.	Т	s	A	F	Е	Ν	LF	R		E	A	F	۷	D	V	r L	. A	C	E	G	R	s	-	ŀ	< A	ιH	R	۷	۷	L	s	A C	C S	5	
5. ABRU	C	2 0	2 (٦I	н	Q	Q	н	Y	A	L	K	W	Ν	D	F	Q	S	S	I.	L	S	S	F	R	н	LF	R [) E	E	D	F	۷	D	V	r L	. A	C	D	Е	R	s	- F	F	r A	ιH	K	۷	۷	L	s	A (C S	5	
6. GAF	S	S L	. F	P	М	Ν	S	L	Y	S	L	Т	W	G	D	Y	G	Т	S	L	۷	S	A	I.	Q	L	LF	२ () H	G	D	L	۷	D	С	r L	. A	A	G	G	R	s	- F	FF	PA	ιH	K	I.	۷	L	С	A A	A S	5	
7. KEN	N	1 1	< E	Е	F	Q	R	М	L	М	L	Q	Y	s	к	Н	G	Е	С	T.	L	к	Е	T.	G	A	AI	FF	RG	E	н	Ρ	A	D	L	ГІ	V	C	E	Ν	К	V	κI	. +	H A	ι H	Κ	L	٧	L	A	A A	A S	5	
Speciestal Group Name																																*		1	*	*		*																	1
1. CHNMO	K	C F	< F	F	A	D	L	F	E	Ν	Т	Ρ	Т	Ν	G	-	Q	С	۷	I.	I.	L	Е	A	Т	Т	P		I M	A	A	L	L	E	F١	ΛY	' K	G	Е	۷	н	V	s	2 E	E A	L	Ν	S	F	L	ĸ	s /	A E	5	5
2. FRU	F	٩	ſ	F	Е	Т	I	F	L	Q	Ν	Q	н	Ρ	-	-	Н	Ρ	I	I.	Y	L	K	D	۷	R	Y	S E	EM	R	S	L	L	D	F١	ΛY	' K	G	Е	۷	N	V	G	2 5	s s	S L	Ρ	М	F	L	ĸ	T /	A E	5	; I
3. MMD4	F	P	F	F	R	K	М	F	Т	Q	М	Ρ	s	Ν	Т	-	н	A	I	۷	F	L	Ν	Ν	۷	S	н	S A	۱L	K	D	L	1	Q	F١	ΛY	C C	G	Е	۷	N	V	ĸ	2 [) A	۱L	Ρ	A	F	I.	s	T /	A E	5	1
4. BRC4	F	٩	ſ	F	R	Е	L	L	K	S	Т	Ρ	С	ĸ	-	-	н	Ρ	۷	I.	L	L	Q	D	۷	Ν	F I	A E	L	н	A	L	V	E	F	ΙY	' H	I G	Е	۷	N	V	н	2 1	< S	L	Q	s	F	L	ĸ	T /	A E	١V	1
5. ABRU	F	٩	ſ	F	R	R	L	L	K	A	Ν	Ρ	С	Е	-	-	н	Ρ	I	۷	I.	L	R	D	۷	R	C	D	V	Е	Ν	L	L	s	F١	ΛY	'N	I G	Е	۷	N	V	Sŀ	HE	EC	۱L	Ρ	D	F	L	ĸ	T A	A F	I L	. 1
6. GAF	F	PF	- 1	L	L	D	L	L	K	Ν	Т	Ρ	С	K	-	-	н	Ρ	۷	۷	М	L	A	G	۷	N	A	N E	L	Е	А	L	L	E	F۱	/ Υ	R	G	Е	۷	s	V	DH	H A	۱C	۱L	Ρ	S	L	L	Q /	A A	A C	1 C	: 1
7. KEN	F	۲	-	I	R	N	L	L	E	D	Т	н	L	S	D	С	S	Т	Т	۷	Y	F	Ρ	D	۷	N	A	٢١	F	K	F	L	L	D	F۱	Y	' S	G	Q	Т	С	L	T S	S F	R	V	Ν	Y	L	н	D	LL	- L	. L	. 1

Secondary structure prediction of btb domain

Intersection of α -helix and β -sheet:

The mechanism of dimerization

The hydrophobic residue on β -sheet keeps the dimerization :

 β 1 from one and β 5 from the other

The mechanism of dimerization

Hydrophobic residue:

tBlastn for Cp190 in vertebrates

Results: negative

In Danio rerio:

Sequences producing significant alignments:

Select: All None Selected:0

1	🕻 Alignments 🔚 Download 🖂 GenBank Graphics						0
	Description	Max	Total	Query	Е	Ident	Accession
	Description	score	score	cover	value	luelli	Accession
	Danio rerio zinc finger and BTB domain containing 12, tandem duplicate 1 (zbtb12.1), mRNA	56.6	95.9	22%	5e-08	28%	NM 001044887.1
	Danio rerio zinc finger and BTB domain containing 12, tandem duplicate 2 (zbtb12.2), mRNA	55.8	96.7	21%	1e-07	28%	<u>NM 001044884.1</u>
	Danio rerio zinc finger and BTB domain containing 18 (zbtb18), mRNA	42.7	82.8	13%	0.001	34%	NM 001082952.1

In homo sapiens:

Sequences producing significant alignments:

Select: All None Selected:0

Ī	🕻 Alignments 🖥 Download 👻 <u>GenBank</u> <u>Graphics</u>						0		
	Description	Max	Total	Query	Е	Idant	Accession		
	Description	score	score	cover	value	Ident	Accession		
	Homo sapiens zinc finger protein 264 (ZNF264), mRNA	36.6	36.6	14%	0.60	24%	NM 003417.4		
	Homo sapiens zinc finger protein 710 (ZNF710), mRNA	38.1	38.1	13%	0.19	25%	NM 198526.3		

Part I summary:

- Btb domain is not conserved in sequence in the Drosophila.
- Hydrophobic residues are important for dimerization.
- Btb-zinc finger proteins are not conserved in sequence between vertebrates and invertebrates.

Structure of zinc-finger domain

Cysteine and histidine interacts with Zn

(From Teacher Luo)

Zinc-finger domain of CP190 alignment

Sequences producing significant alignments:

Sel	lect: All None Selected:0						
AT	Alignments Download ~ GenBank Graphics						0
	Description	Max score	Total score	Query cover	E value	Ident	Accession
	Homo sapiens zinc finger protein 236 (ZNF236), transcript variant 1, mRNA	35.8	92.8	97%	0.001	33%	NM 001306089.1
	Homo sapiens zinc finger protein 236 (ZNF236), transcript variant 2, mRNA	35.8	92.4	97%	0.001	33%	NM 007345.3
	Homo sapiens zinc finger and BTB domain containing 41 (ZBTB41), transcript variant 1, mRNA	35.4	35.4	97%	0.002	36%	<u>NM 194314.2</u>
	Homo sapiens zinc finger and BTB domain containing 41 (ZBTB41), transcript variant 2, non-coding RNA	35.0	35.0	97%	0.003	36%	NR 135153.1
	Homo sapiens zinc finger protein 423 (ZNF423), transcript variant 3, mRNA	33.9	64.3	97%	0.006	27%	NM 001330533.1
	Homo sapiens zinc finger protein 423 (ZNF423), transcript variant 1, mRNA	33.9	64.3	97%	0.006	27%	NM 015069.4
	Homo sapiens zinc finger protein 423 (ZNF423), transcript variant 2, mRNA	33.9	64.3	97%	0.006	27%	NM 001271620.2
	Homo sapiens zinc finger and BTB domain containing 26 (ZBTB26), transcript variant 2, mRNA	32.7	59.7	97%	0.019	29%	NM 001304363.1
	Homo sapiens zinc finger and BTB domain containing 26 (ZBTB26), transcript variant 1, mRNA	32.7	59.7	97%	0.019	29%	NM 020924.3
	Homo sapiens zinc finger and BTB domain containing 26 (ZBTB26), transcript variant 3, mRNA	32.7	59.7	97%	0.019	29%	NM 001304364.1
	Homo sapiens ovo like zinc finger 2 (OVOL2), transcript variant 1, mRNA	31.6	89.3	97%	0.050	31%	NM 021220.3
	Homo sapiens zinc finger protein 521 (ZNF521), transcript variant 2, mRNA	31.2	56.2	97%	0.068	31%	NM 001308225.1
	Homo sapiens zinc finger protein 521 (ZNF521), transcript variant 1, mRNA	31.2	56.2	97%	0.068	31%	NM 015461.2

Shortcomings: Similar motifs doesn't mean similar genes, for genes are not all conserved among the two species.

(https://blast.ncbi.nlm.nih.gov/Blast.cgi)

Zinc-finger domain motif prediction

DNA Sequence Logo Generator

A DNA binding site predictor for Cys₂His₂ Zinc Finger Proteins

A candidate protein in mammalian which has btb domain and zinc-finger domain. Then we take this as an example.

Anton Persikov and Mona Singh (2014) <u>"De Novo Prediction of DNA-binding</u> <u>Specificities for Cys2His2 Zinc Finger Proteins"</u>. NAR, 42(1): 97-108. Epub 2013 Oct 3.

Motif mapped to the Genome

10,000 results back(mapped to the hg19)

Find Individual Motif Occurences

name	start	stop	strand	score	p-value	q-value	sequence
chr1	121484880	121484889	-	4.95556	1.14E-10	0.663	TTTTCTGCCA
chr5	134260230	134260239	+	3.8	2.88E-10	0.685	ATTGGTGCGG
chr5	134262786	134262795	+	3.37778	4.48E-10	0.685	ATGACTGCGC
chr11	10531048	10531057	+	3.33333	4.73E-10	0.685	TTTCTTGCCA
chr13	108594574	108594583	+	2.73333	9.20E-10	0.747	attcctgctg
chr19	41769928	41769937	-	2.62222	9.97E-10	0.747	TTTCCTGCGC
chr22	21271467	21271476	+	2.55556	1.07E-09	0.747	TTTCCTGCCA
chr6	58777233	58777242	-	2.51111	1.15E-09	0.747	TTTTCTGCCG
chr6	37151230	37151239	+	2.26667	1.73E-09	0.747	TTTCCTGCCC
chr1	121485197	121485206	+	2.17778	1.97E-09	0.747	atttcagccg
chr6	43027215	43027224	-	2.13333	2.11E-09	0.747	TTTTCTGCCC
chr16	72127617	72127626	+	2.11111	2.23E-09	0.747	TTTCCTGCCC
chr16	33963105	33963114	+	1.95556	2.72E-09	0.747	tttagtgcca
chr8	70602577	70602586	-	1.95556	2.72E-09	0.747	ATTTCTGCCC

(http://meme-suite.org/tools/fimo)

Motif mapped to the Genome

UCSC Galaxy: intersect interval. (Mapped to hg19.)

Gene Name	Annotation	Gene Type	Detailed Annotation	Distance to TSS
CPPED1	intron (NM_018340, intro	protein-coding	intron (NM_018340, in	2931
LOC101928068	intron (NM_001290327, ir	ncRNA	intron (NM_001290327	-38125
SUSD1	intron (NM_022486, intro	protein-coding	MER89 LTR ERV1	4169
MCM3	promoter-TSS (NM_0012	protein-coding	promoter-TSS (NM_00	-31
GABRR2	Intergenic	protein-coding	Intergenic	-6030
EDN2	Intergenic	protein-coding	Intergenic	51881
WDR66	intron (NM_001178003, ir	protein-coding	L1M5 LINE L1	9104
HIST1H4H	Intergenic	protein-coding	Intergenic	-35819
ZNF277	promoter-TSS (NM_0147	protein-coding	promoter-TSS (NM_01	120
TAS2R40	Intergenic	protein-coding	Intergenic	-6760
PSMD8	intron (NM_021185, intro	protein-coding	CpG-13646	-11848
RCAN3AS	promoter-TSS (NM_0134	ncRNA	promoter-TSS (NM_01	-209
STXBP5	promoter-TSS (NM_00112	protein-coding	promoter-TSS (NM_00	-864
C2CD4A	TTS (NM_207322)	protein-coding	TTS (NM_207322)	4910
CNOT3	promoter-TSS (NM_0145)	protein-coding	promoter-TSS (NM_01	-585
CSNK1D	intron (NR_110578, intror	protein-coding	intron (NR_110578, int	6404
PSEN2	Intergenic	protein-coding	Intergenic	-65340
MIR1208	Intergenic	ncRNA	Intergenic	203709
ACPT	Intergenic	protein-coding	Intergenic	-6717
UMAD1	promoter-TSS (NM_0013)	protein-coding	promoter-TSS (NM_00	-127
EXD3	intron (NR_104598, intror	protein-coding	THE1A LTR ERVL-MaLF	20265
TMEM116	intron (NM_001294314, ir	protein-coding	L1MC2 LINE L1	37552
LOC100506023	intron (NR_037845, intror	ncRNA	LTR5B LTR ERVK	1993
PIP5K1B	Intergenic	protein-coding	L3 LINE CR1	-78617

(https://usegalaxy.org/)

Binding site analysis

Binding site analysis

Promoter: directly mediate transcription

Intergenic&intron: keep chromosome structure

Gene ontology analysis

(http://www.geneontology.org/page/go-enrichment-analysis)

Conclusion:

- Btb domain is not sequenced-conserved but conserves in structure and function.
- Zinc finger motif prediction combined with chip-seq reveals some clues for conservation.

Future plan:

- Compare our prediction with zbtb family chip-seq data.
- Point mutation of the hydrophobic residue.

Acknowledgement:

- Jingchu Luo(Teacher)
- Xiong Ji(Rotation mentor)
- Lan Ke(teaching assistant)
- Group 15 members
- All of you

Happy New Year!

From (美图秀秀)