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We present the crystal structure at 2.7 angstrom resolution of the human
antibody IgG1 b12. Antibody b12 recognizes the CD4-binding site of human
immunodeficiency virus–1 (HIV-1) gp120 and is one of only two known an-
tibodies against gp120 capable of broad and potent neutralization of primary
HIV-1 isolates. A key feature of the antibody-combining site is the protruding,
finger-like long CDR H3 that can penetrate the recessed CD4-binding site of
gp120. A docking model of b12 and gp120 reveals severe structural constraints
that explain the extraordinary challenge in eliciting effective neutralizing an-
tibodies similar to b12. The structure, together with mutagenesis studies,
provides a rationale for the extensive cross-reactivity of b12 and a valuable
framework for the design of HIV-1 vaccines capable of eliciting b12-like activity.

HIV-1 vaccine development is greatly hin-
dered by the extreme difficulty in eliciting a
neutralizing antibody response to the virus
(1–3). However, three human monoclonal an-
tibodies have been identified that can effi-
ciently neutralize a broad array of primary
isolates of HIV-1 in vitro (4 ) and can protect
against viral challenge in vivo (5–9). Anti-
body 2F5 (10) reacts with gp41, whereas

2G12 (11) and b12 (12) react with indepen-
dent epitopes on gp120. Elucidation of the
epitopes recognized by these antibodies may
offer valuable insights into the design of an-
tigens capable of eliciting a protective anti-
body response.

Antibody b12 was identified from a com-
binatorial phage display library developed
from bone marrow donated by a 31-year-old
homosexual male who had been seropositive,
but without symptoms, for 6 years (12). This
antibody recognizes a highly conserved
epitope overlapping the CD4-binding region
of gp120, which accounts for its broad rec-
ognition of different HIV-1 isolates. Anti-
body b12 neutralizes about 75% of clade B
primary viruses and a similar, or somewhat
lesser, proportion of other clades (12, 13). In

addition, b12 can protect hu-PBL-SCID mice
(5 ) and macaques (7 ) from viral challenge.
This combination of potency and broad spec-
ificity suggests that the b12 epitope on gp120
may be a particularly effective target for vac-
cine design.

The b12 IgG1	 was expressed in CHO
cells, purified, and crystallized as previously
described (14 ). The crystal structure of the
intact IgG1 was determined at 2.7 Å resolu-
tion through an exhaustive molecular replace-
ment (MR) search using more than 100 indi-
vidual Fc and Fab search models (14 ). The
highly mobile hinge regions connecting the
Fabs to the Fc domains were interpretable
after extensive rebuilding, refinement, and
density modification (Table 1). Only three
residues of the upper hinge of one heavy
chain, seven residues of a frequently disor-
dered surface loop of one Fab CH1 domain
(residues 128 to 135), and three COOH-ter-
minal residues from one Fc are disordered.

The IgG structure is highly asymmetric
(Fig. 1) and can be considered a “snapshot”
of the broad range of conformations available
in solution. The overall shape is between a Y
and a T, with a 143° angle between the major
axes of the two Fabs (15). The IgG spans 171
Å from the apex of one antigen-binding site
to the other. The Fc region is twisted nearly
perpendicularly to the planes of the Fabs and
shifted some 32 Å from the central dyad
relating the two Fabs, so that it packs into the
space beneath only one of the Fabs (Fig. 1).

The hinge regions form extended structures
with some conformational variation in torsion
angles between the two chains, reflecting the
different relative placement and environment of
the two Fabs relative to the Fc domain. One
upper hinge forms a spiral arrangement similar
to a partially unwound helix; the other forms an
extended turn as the polypeptide chain reverses
direction to connect the Fab to the Fc. The core
hinge region contains two adjacent pairs of
cysteine residues, but only one disulfide is ob-
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served in the electron density maps. The broken
disulfide may be dynamic or may be a result of
radiation damage, but probably has no function-
al importance, as only a single hinge disulfide is
necessary for complement-mediated lysis and
antibody-dependent cell-mediated cytotoxicity
and phagocytosis (16).

Carbohydrate sequencing of b12 reveals
two biantennary-branched oligosaccharide
chains, but with branching fucose and termi-
nal galactose residues in incomplete occupan-
cy (14 ). This asymmetry is reflected in the
electron density maps where one chain has
both terminal galactose residues but lacks the
fucose; the other incorporates the fucose but
lacks the terminal galactose on the 1,3 arm.

Antibody b12 has a long CDR H3 (18 ami-
no acids) that rises 15 Å above the surface of
the antigen-binding site with a Trp residue at its
apex (Fig. 2). A patch of acidic residues (17)
along one face of this loop may help maintain
the vertical projection through charge repulsion.
This extended CDR H3 finger-like loop would

allow the antibody to probe the recessed CD4-
binding site of gp120; all members of a panel of
32 antibodies against the CD4-binding site de-
veloped from phage display have a similar
length CDR H3 (18). To validate this notion,
we designed a synthetic peptide to mimic the
crystal structure of CDR H3. The peptide by
itself is capable of viral neutralization when
coupled to bovine serum albumin (BSA) (19)
(Fig. 3).

Traditional views suggest that antigen-
binding sites for antibodies against proteins
are relatively flat. However, extended H3
loops are frequently seen in human antibodies
directed against pathogens (20–22) that
would allow them to access canyons and
clefts on the viral surface (23). It is notewor-
thy that mouse antibodies do not normally
exhibit such long CDR H3 loops, and indeed,
few murine antibodies against the CD4-bind-
ing site have been described relative to the
corresponding plethora of human antibodies
of this specificity.

Ideally, we would prefer to dock our b12
structure onto an envelope gp120 trimer, as this
is probably the relevant structure for neutraliza-
tion. However, the only available gp120 struc-
ture is that of its monomeric core as a complex
with CD4 and a Fab fragment (24). One inter-
pretation of thermodynamic studies on recom-
binant monomeric gp120 is that CD4 binding
might be accompanied by some structural rear-
rangement in gp120 (25). However, because
structures of core gp120 from a primary isolate
and a T cell line–adapted virus can be super-
imposed (24, 26 ) and because earlier stud-
ies indicated that b12 and CD4 are sensitive
to the same mutations in gp120, it is rea-
sonable to use the CD4-bound core gp120
structure for generation of a docking model
that can be tested by mutagenesis.

One hundred computational docking ex-
periments were performed in parallel by us-
ing AutoDock (27 ). Each experiment used a
126 � 126 � 126 Å grid centered on gp120,
each using 250,000 energy evaluations, and
different, randomly selected initial orienta-
tions and translations of the b12 Fv. The best

Fig. 1. C� trace of the intact human IgG1 b12.
The residues are colored by B value, with lower
than average colored blue, average colored
white, and higher than average colored red. (A)
Front view showing the reach of the two Fabs
and packing of the Fc domain underneath the
right Fab. The hinge regions and one Fc CH2 are
characterized by the highest B values and
greatest mobility. (B) Side view of the IgG
[rotated 90° from (A)] demonstrating the near-
perpendicular twist of the Fc relative to the
Fabs. Carbohydrate chains form the contact
between the CH2 domains and are illustrated in
ball-and-stick. Figure generated with Bobscript
(44) and Raster3D (45). See (46) for an inter-
active image.

Table 1. Structure determination of IgG1 b12. Data to 2.7 Å resolution were collected from a single
cryocooled crystal at SSRL Beamline 7-1 on a MAR (MAR-Research) 30-cm area detector and processed
with DENZO and SCALEPACK (38). Although the Rsym for the highest resolution shell is relatively high
(62.6%), this shell contains useful information, because the I/
 is 2.4 and because inclusion of these
reflections clearly improved the electron density maps. The structure was determined by molecular
replacement (MR) using the software package AMoRe within the CCP4 suite (39) as described (14). Initial
Rcryst and Rfree values after MR and substitution of the b12 sequence were 0.37 and 0.44, respectively. The
structure was refined in CNS (40) using a maximum likelihood target function and an initial overall
anisotropic temperature factor correction. Multiple cycles of rebuilding in TOM/FRODO (41), refinement,
as well as density modification in DM (42) by using a perturbation � correction, dramatically clarified
density and allowed construction of approximately 65 residues in the hinge, carbohydrate, and solvent-
exposed regions. The overall average B value is 90 Å2, reflecting the high solvent content of the crystals
and interdomain flexibility of the IgG molecule. However, the electron density, with exception of the
flexible hinge region and some solvent exposed loops, is absolutely clear and completely unambiguous.
Water molecules were only built into highly ordered regions of the structure. B values for protein atoms
in the vicinity of the incorporated water molecules ranged from 30 to 65 Å2.

Parameter Value

Data collection
Space group R32
Unit cell dimensions (Å) a � b � 271.3, c � 175.2
Matthew’s coefficient (VM, Å

3Da
1) 4.1, 70% solvent
Resolution 30–2.7 Å
Total observations 187712 (8424)*
Unique reflections 63686 (3113)*
Rsym (%) 7.2 (62.6)*
Completeness (%) 94.4 (95.5)*
Redundancy 2.9 (2.7)*
I/
 17.6 (2.4)*

Refinement
Total residues 1331
Water molecules 71
Sugars 18
Refinement range (Å) 30–2.7
Rcryst (%) 22.5
Rfree (%) 27.2
Bond length deviation (Å) 0.005
Bond angle deviation (°) 1.2
Residues in most favored regions (%)
of Ramachandran plot

83.7

Residues in disallowed regions (%) 0.2†
Average B value, protein (Å2) 90
Average B value, water (Å2) 58
Average B value, carbohydrate (Å2) 142

*Values for outer shell from 2.75 to 2.70 Å. †Val51 of both light chains. This residue exists in a well-defined � turn
in almost all antibody structures, but is designated by PROCHECK (43) as an outlier.
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docking model has an energy of –24.7 kcal/
mol, which is comparable to those obtained
when docking CD4 onto gp120 in which
AutoDock recreated the crystallized CD4-
gp120 complex (28). This computational
docking (Fig. 4A) arrives at a solution essen-
tially identical to that first obtained manually,
by using physical models generated from the
b12 and gp120 coordinates.

The crystal structure of the gp120 com-

plex (24, 26 ) demonstrates that CD4 inserts a
loop terminating in Phe43 into a polar pocket
in gp120 in order to achieve complementarity
(Fig. 4B). An antibody is twice as wide as
CD4 (two immunoglobulin domains in width
versus one). Thus, the imprint of a Fab onto
the neutralizing face of gp120 will be ex-
tremely limited by geometric fit. The opening

of the CD4-binding face of gp120 between
the V1/V2 loop stem and constant region 4
(C4) is 35 Å wide, whereas the width of the
Fab combining site is 31 Å. For gp120 in the
envelope trimer, space for b12 binding in the
lateral direction is bounded by the trimer inter-
face and the 2G12 epitope, as b12 can bind
native trimeric spikes (29), and also bind gp120

Fig. 2. Prominence of the CDR H3 finger-like loop in IgG1 b12. (A) Side
view of the antigen-binding site of the Fv portion of b12. Contributions
to the surface from each CDR are indicated. CDR H3 projects 15 Å above
the other CDRs. (B) Stereo view of CDR H3 with surrounding final 2Fobs
– Fcalc electron density contoured at 2.0 
. Trp100 is presented at the
apex of the loop, and five intra-loop hydrogen bonds are indicated by
dotted blue lines. The CDR H3 is unlikely to deform upon gp120 binding

because of the presence of aromatic residues at the base and charge
repulsion of the acidic patch on the inner face. In fact, four crystallo-
graphically distinct structures of the CDR H3 are identical [two on this
symmetric IgG and two solved as Fab fragments in complex with
a peptide (47)]. Molecular surfaces were calculated by using MSMS
(48) and a 1.5 Å probe and visualized by using PMV (49). Density
figure generated by using Bobscript (44) and Raster3D (45).

Fig. 3. Neutralization of HIV-1MN and HIV-
1HxB2 by IgG1 b12 and by a synthetic CDR H3
peptide. The peptide was designed as a CDR H3
loop mimic and coupled to BSA. A control
peptide G� (American Peptide Co., Inc.) does
not neutralize when coupled to BSA. HIV-1MN
and HIV-1HxB2 were neutralized by using H9
target cells and detection of p24 in ELISA as a
reporter assay as described in (5). Filled circles,
IgG1 b12 (MN); open circles, IgG1 b12 (HxB2);
filled squares, CDR H3-BSA (MN); open squares,
CDR H3-BSA (HxB2); filled diamonds, G�-BSA
(MN); open diamonds, G�-BSA (HxB2).

Fig. 4. Model of b12 in-
teracting with gp120. (A)
Comparison of Fab b12
docking onto gp120 with
the CD4-gp120 crystal
structure (24). Fab b12 is
drawn as a C� trace in
yellow and gp120 in gray,
showing the high comple-
mentarity of the gp120
and b12 structures, with
their corresponding mo-
lecular surfaces outlined
in the background. The
placement of b12 over-
laps with that of CD4
(red). (B) Close-up view of
the docking. The b12 an-
tibody presents Trp100 at
the apex of the extended
CDR H3 into the same
pocket on gp120 that
would be occupied by
Phe43 of CD4 (red). Sever-
al gp120 residues (Ser365,
Asp368, Ile371, Tyr384, and
Val430) that are impor-
tant to b12 binding are
illustrated in gray.
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concurrently with antibody 2G12 (30). The
docking shows that b12 may fit snugly onto
gp120 by binding an epitope extending from
the V1/V2 loop stem across the neutralizing
face, with Trp100 at the tip of the H3 loop
penetrating the Phe43 pocket (Fig. 4B). Trp100

is a crucial residue for b12 binding to gp120, as
it is exclusively selected when CDR H3 resi-
dues are randomized (31). Further, mutation to
Phe diminishes binding by 50% under condi-
tions for which mutation to Ala, Val, or Ser
diminishes binding by 85% (32).

IgG1 b12 and gp120 demonstrate comple-
mentary contact surfaces, like fingers fitting
into a glove (Fig. 4A). The protruding ridge
formed by Ser364 through Asp368 fits into a
cleft between CDRs H3 and H2, and the
protruding D loop of gp120 fits into a depres-
sion formed between CDRs H3, L1, and L3.
In the docking model, approximately 2070
Å2 of solvent-accessible surface is buried in
the b12-gp120 interface (1030 Å2 on gp120
and 1040 Å2 on b12). The b12 interaction
surface, like the footprint of CD4, is centered
on the outer domain of gp120 with some
additional contact extending to the V1/V2
loop stem, but with minimal contact to the
inner domain.

From this docking, a list of likely contact
residues was generated. Alanine mutation of
seventeen of these and additional neighboring
residues supports the docking model (Fig. 5).
In fact, several mutations enhance b12 bind-
ing, suggesting that b12, like CD4, may rec-
ognize gp120 through many main-chain con-
tacts, allowing b12 to be relatively insensitive
to side-chain variation.

The ability of b12 to neutralize primary
viruses is associated with its ability to bind
trimeric, as well as monomeric, gp120, whereas
the other nonneutralizing CD4-binding site an-
tibodies principally bind only monomeric
gp120. Antibody b12 is also unique in its sen-
sitivity to mutations associated with the V1/V2
loop (29) and, in particular, to changes in the
V2 stem structure (33). In our model, the b12
Fab fits onto gp120 by contacting the inside
face of the V1/V2 loop stem. We suggest that
this mode of interaction angles the rest of the
antibody bulk away from the trimer interface in
an arrangement that permits attachment to the
oligomeric spikes on the viral surface. Thus, the
likely reason that antibody b12 is capable of
potent neutralization of a broad array of isolates
is that its interaction with the conserved CD4
epitope is mediated through many main-chain
contacts and is angled in such a way that the
antibody can access its epitope on the native
viral surface.

Trimeric envelope spikes have three
equivalent CD4-binding sites. Although the
170 Å reach of the IgG indicates that it could
bivalently span two different spikes (34 ), b12
would probably not be able to bind simulta-
neously to two binding sites on the same
trimeric spike. Nevertheless, the large mass
(150 kD) of the IgG molecule compared with
that of the envelope trimer is likely to block
attachment of the virus to the target cell
and/or fusion of viral and cell membranes,
even at coating densities well below three
IgG molecules per trimeric spike (35).

In conclusion, the structure of an intact
human antibody capable of neutralizing a
broad range of primary HIV-1 isolates illu-
minates the surface topography of the anti-
gen-binding site. The highly extended CDR
H3 is capable of accessing the vulnerable
CD4-binding site of gp120 and may provide
leads for antiviral compounds or peptides.
Fine mapping of the b12 epitope also facili-
tates the design of minimized gp120 cores or
peptidomimetics. Such structural information
should provide new possibilities in the global
effort to design an effective HIV-1 vaccine.
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Enforcement of Temporal
Fidelity in Pyramidal Cells by

Somatic Feed-Forward Inhibition
Frédéric Pouille and Massimo Scanziani*

The temporal resolution of neuronal integration depends on the time window
within which excitatory inputs summate to reach the threshold for spike
generation. Here, we show that in rat hippocampal pyramidal cells this window
is very narrow (less than 2milliseconds). This narrowness results from the short
delay with which disynaptic feed-forward inhibition follows monosynaptic
excitation. Simultaneous somatic and dendritic recordings indicate that feed-
forward inhibition is much stronger in the soma than in the dendrites, resulting
in a broader integration window in the latter compartment. Thus, the subcel-
lular partitioning of feed-forward inhibition enforces precise coincidence de-
tection in the soma, while allowing dendrites to sum incoming activity over
broader time windows.

At certain brain synapses, reliable transmis-
sion is ensured through large, rapidly rising,
excitatory postsynaptic potentials (EPSPs),
which are able to trigger a spike with little
latency variation (1).

In hippocampal pyramidal cells (PCs), the
small size of most unitary EPSPs requires
that synaptic activity summate to reach the
spike threshold (2). In principle, the relatively
long membrane time constant of these neu-
rons (3) may allow EPSPs to summate over
large time windows. The occurrence of
spikes would then reflect the average synap-
tic bombardment over time instead of being
selectively time-locked to coincident synaptic
activity. Thus, it is not known whether the
timing of a spike in PCs reports the timing of
the afferent activity triggering the spike (4–
6 ). This issue can be addressed experimen-
tally by determining the time window within
which the activity of independent synaptic
inputs must occur to trigger a spike.

We recorded from CA1 PCs in acute
hippocampal slices from rat brains in cell-
attached mode to avoid interfering with the
intracellular ionic composition. Two stim-
ulation electrodes were placed in the stra-
tum radiatum at 300 to 600 �m on each
side of the recorded neuron (7 ). Stimula-
tion intensity was set so that when the two
Schaffer collateral pathways were stimulat-
ed simultaneously, the PC fired a spike,
detected as a capacitive current, in about

50% of the trials (threshold stimulation).
The probability of spiking steeply de-
creased when one of the stimuli was shifted
in time in 2.5- or 5-ms steps (Fig. 1A). A
Gaussian fit of the data gave a SD of 1.4 ms
(n � 9 cells).

We then blocked �-aminobutyric acid A
receptors (GABAAR) with bicuculline (20
�M) or with the more selective antagonist
SR95531 (3 �M) (8) and readjusted the stim-
ulation intensity of both pathways to match
the spiking probability observed under con-
trol conditions with simultaneous stimulation
(51 � 3% in control conditions versus 50 �
5% in the presence of bicuculline, n � 5
cells; 62 � 6% in control conditions versus
64 � 11% in the presence of SR95531, n �
4 cells). This increased the delay between
stimulus and spike (8.2 � 0.6 ms in control
conditions, 16.8 � 1.2 ms in the presence of
GABAAR antagonist; n � 9 cells).

GABAAR antagonists greatly prolonged
the integration window (SD � 17.8 ms in
bicuculline, n � 5 cells; SD � 15.6 ms in
SR95531, n � 4 cells). In addition, although
spikes triggered with simultaneous stimula-
tion under control conditions showed submil-
lisecond variability in spike delay ( jitter), as
described for intracellular current injections
(9), in the presence of GABAAR antagonists
the jitter increased almost threefold (the SD
was 0.5 ms in control conditions versus 1.4
ms with GABAAR antagonists, n � 9 cells;
Fig. 1B).

We monitored the underlying synaptic
events using whole-cell recordings. In volt-
age-clamped cells, a stimulus elicited an ex-
citatory postsynaptic current (EPSC)–inhibi-
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